Разное

Теплоемкость кирпича: Плотность и удельная теплоемкость кирпича: таблица значений

Содержание

Плотность и удельная теплоемкость кирпича: таблица значений

Кирпич — ходовой стройматериал в строительстве зданий и сооружений. Многие различают только красный и белый кирпич, но его виды намного разнообразнее. Они различаются как внешне (форма, цвет, размеры), так и такими свойствами, как плотность и теплоемкость.

Традиционно различают керамический и силикатный кирпич, которые имеют различную технологию изготовления. Важно знать, что плотность кирпича, его удельная теплоемкость и теплопроводность кирпича у каждого вида может существенно отличаться.

Керамический кирпич изготавливается из глины с различными добавками и подвергается обжигу. Удельная теплоемкость керамического кирпича равна 700…900 Дж/(кг·град). Средняя плотность керамического кирпича имеет значение 1400 кг/м3. Преимуществами этого вида являются: гладкая поверхность, морозо- и водоустойчивость, а также стойкость к высоким температурам. Плотность керамического кирпича определяется его пористостью и может находится в пределах от 700 до 2100 кг/м

3. Чем выше пористость, тем меньше плотность кирпича.

Силикатный кирпич имеет следующие разновидности: полнотелый, пустотелый и поризованный, он имеет несколько типоразмеров: одинарный, полуторный и двойной. Средняя плотность силикатного кирпича составляет 1600 кг/м3. Плюсы силикатного кирпича в отличной звуконепроницаемости. Даже если прокладывать тонкий слой из такого материала, звукоизоляционные свойства останутся на должном уровне. Удельная теплоемкость силикатного кирпича находится в пределах от 750 до 850 Дж/(кг·град).

Значения плотности кирпича различных видов и его удельной (массовой) теплоемкости при различных температурах представлены в таблице:

Таблица плотности и удельной теплоемкости кирпича
Вид кирпичаТемпература,
°С
Плотность,
кг/м3
Теплоемкость,
Дж/(кг·град)
Трепельный-20…20700…1300712
Силикатный-20…201000…2200754…837
Саманный-20…20 —753
Красный0…1001600…2070840…879
Желтый-20…201817728
Строительный20800…1500800
Облицовочный201800880
Динасовый1001500…1900842
Динасовый10001500…19001100
Динасовый15001500…19001243
Карборундовый201000…1300700
Карборундовый1001000…1300841
Карборундовый10001000…1300779
Магнезитовый1002700930
Магнезитовый100027001160
Магнезитовый150027001239
Хромитовый1003050712
Хромитовый10003050921
Шамотный1001850833
Шамотный100018501084
Шамотный150018501251

Необходимо отметить еще один популярный вид кирпича – облицовочный кирпич. Он не боится ни влаги, ни холодов.

Удельная теплоемкость облицовочного кирпича составляет 880 Дж/(кг·град). Облицовочный кирпич имеет оттенки от ярко-желтого до огненно-красного. Таким материалом можно производить и отделочные и облицовочные работы. Плотность кирпича этого вида имеет величину 1800 кг/м3.

Стоит отметить отдельный класс кирпичей — огнеупорный кирпич. К этому классу относятся динасовый, карборундовый, магнезитовый и шамотный кирпич. Огнеупорный кирпич достаточно тяжел — плотность кирпича этого класса может достигать значения 2700 кг/м3.

Наименьшей теплоемкостью при высоких температурах обладает карборундовый кирпич — она составляет величину 779 Дж/(кг·град) при температуре 1000°С. Кладка из такого кирпича прогревается намного быстрее, чем из шамотного, но хуже держит тепло.

Огнеупорный кирпич применяется, при строительстве печей, с рабочей температурой до 1500°С. Удельная теплоемкость огнеупорного кирпича существенно зависит от температуры. Например, удельная теплоемкость шамотного кирпича имеет величину 833 Дж/(кг·град) при 100°С и 1251 Дж/(кг·град) при 1500°С.

Источники:

  1. Франчук А. У. Таблицы теплотехнических показателей строительных материалов, М.: НИИ строительной физики, 1969 — 142 с.
  2. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  3. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  4. Михеев М. А., Михеева И. М. Основы теплопередачи.

Удельная теплоемкость кирпича

Подбирая подходящий материал для проведения того или иного вида строительных работ, особое внимание следует обращать на его технические характеристики. Это касается и удельной теплоемкости кирпича, от которой во многом зависит потребность дома в последующей термоизоляции и дополнительной отделке стен.

Характеристики кирпича, которые влияют на его применение:

  • Удельная теплоемкость. Величина, определяющая количество тепловой энергии, необходимой для нагревания 1 кг на 1 градус.
  • Теплопроводность. Очень важная характеристика для кирпичных изделий, позволяющая определить количество передаваемого тепла со стороны комнаты на улицу.
  • На уровень теплопередачи кирпичной стены прямым образом влияют характеристики использованного для ее возведения материала. В тех случаях, когда речь идет о многослойной кладке, потребуется учитывать коэффициент теплопроводности каждого слоя в отдельности.

Керамический

Исходя из технологии производства, кирпич классифицируется на керамическую и силикатную группы. При этом оба вида имеют значительные отличия по плотности материала, удельной теплоемкости и коэффициенту теплопроводности. Сырьем для изготовления керамического кирпича, еще его называют красным, выступает глина, в которую добавляют ряд компонентов. Сформированные сырые заготовки подвергаются обжигу в специальных печах. Показатель удельной теплоемкости может колебаться в пределах 0,7-0,9 кДж/(кг·K). Что касается средней плотности, то она обычно находится на уровне 1400 кг/м3.

Среди сильных сторон керамического кирпича можно выделить:

1. Гладкость поверхность. Это повышает его внешнюю эстетичность и удобство укладки.
2. Стойкость к морозу и влаге. В обычных условиях стены не нуждаются в дополнительной влаго- и термоизоляции.
3. Способность переносить высокие температуры. Это позволяет использовать керамический кирпич для возведения печей, мангалов, жаропрочных перегородок.
4. Плотность 700-2100 кг/м3. На эту характеристику непосредственно влияет наличие внутренних пор. По мере увеличения пористости материала уменьшается его плотность, и возрастают теплоизоляционные характеристики.

Силикатный

Что касается силикатного кирпича, то он бывает полнотелым, пустотелым и поризованным. Исходя из размеров, различают одинарные, полуторные и двойные кирпичи. В среднем силикатный кирпич обладает плотностью 1600 кг/м3. Особенно ценятся шумопоглощающие характеристики силикатной кладки: даже если речь идет о стене небольшой толщины, уровень ее звукоизоляции будет на порядок выше, чем в случае применения других типов кладочного материала.

Облицовочный

Отдельно стоит сказать об облицовочном кирпиче, который с одинаковым успехом противостоит и воде, и повышению температуры. Показатель удельной теплоемкости этого материала находится на уровне 0,88 кДж/(кг·K), при плотности до 2700 кг/м3. В продаже облицовочные кирпичи представлены в большом многообразии оттенков. Они подходят как для облицовки, так и для укладки.

Огнеупорный

Представлен динасовыми, карборундовыми, магнезитовыми и шамотными кирпичами. Масса одного кирпича довольно большая, по причине значительной плотности (2700 кг/м3). Самый низкий показатель теплоемкости при нагревании у карборундового кирпича 0,779 кДж/(кг·K) для температуры +1000 градусов. Скорость нагревания печи, уложенной из этого кирпича, значительно превышает нагрев шамотной кладки, однако охлаждение наступает быстрее.

Из огнеупорного кирпича обустраиваются печи, предусматривающие нагревание до +1500 градусов. На удельную теплоемкость данного материала большое влияние оказывает температура нагрева. К примеру, тот же шамотный кирпич при +100 градусах обладает теплоемкостью 0,83 кДж/(кг·K). Однако, если его нагреть до +1500 градусов, это спровоцирует рост теплоемкости до 1,25 кДж/(кг·K).

Зависимость от температуры использования

На технические показатели кирпича большое влияние оказывает температурный режим:

  • Трепельный. При температуре от -20 до + 20 плотность меняется в пределах 700-1300 кг/м3. Показатель теплоемкости при этом находится на стабильном уровне 0,712 кДж/(кг·K).
  • Силикатный. Аналогичный температурный режим -20 — +20 градусов и плотность от 1000 до 2200 кг/м3 предусматривает возможность разной удельной теплоемкости 0,754-0,837 кДж/(кг·K).
  • Саманный. При идентичности температуры с предыдущим типом, демонстрирует стабильную теплоемкость 0,753 кДж/(кг·K).
  • Красный. Может применятся при температуре 0-100 градусов. Его плотность может колебаться от 1600-2070 кг/м3, а теплоемкость – от 0,849 до 0,872 кДж/(кг·K).
  • Желтый. Температурные колебания от -20 до +20 градусов и стабильная плотность 1817 кг/м3 дает такую же стабильную теплоемкость 0,728 кДж/(кг·K).
  • Строительный. При температуре +20 градусов и плотности 800-1500 кг/м3 теплоемкость находится на уровне 0,8 кДж/(кг·K).
  • Облицовочный. Тот же температурный режим +20, при плотности материла в 1800 кг/м3 определяет теплоемкость 0,88 кДж/(кг·K).
  • Динасовый. Эксплуатация в режиме повышенной температуры от +20 до +1500 и плотности 1500-1900 кг/м3 подразумевает последовательное возрастание теплоемкости от 0,842 до 1,243 кДж/(кг·K).
  • Карборундовый. По мере нагревания от +20 до +100 градусов материал плотностью 1000-1300 кг/м3 постепенно увеличивает свою теплоемкость от 0,7 до 0,841 кДж/(кг·K). Однако, если нагревание карборундового кирпича продолжить далее, то его теплоемкость начинает уменьшаться. При температуре +1000 градусов она будет равняться 0,779 кДж/(кг·K).
  • Магнезитовый. Материал плотностью 2700 кг/м3 при повышении температуры от +100 до +1500 градусов постепенно увеличивает свою теплоемкость 0,93-1,239 кДж/(кг·K).
  • Хромитовый. Нагревание изделия плотностью 3050 кг/м3 от +100 до +1000 градусов провоцирует постепенное возрастание его теплоемкости от 0,712 до 0,912 кДж/(кг·K).
  • Шамотный. Обладает плотностью 1850 кг/м3. При нагревании от +100 до +1500 градусов происходит увеличение теплоемкости материала с 0,833 до 1,251 кДж/(кг·K).

Подбирайте кирпичи правильно, в зависимости от поставленных задач на стройке.

Поделиться

Твитнуть

Запинить

Нравится

Класс

WhatsApp

Viber

Телеграмка

Удельная теплоемкость кирпича: керамического, силикатного и огнеупорного


Кирпич широко применяется в частном и профессиональном строительстве. Существует много разновидностей этого материала. При выборе стройматериала для возведения или облицовки сооружений важную роль играют его характеристики.

Характеристики, влияющие на качество

Нужно учитывать следующие свойства продукта:

  • теплопроводность – это способность передавать тепло, полученное от воздуха внутри помещения, наружу;
  • теплоемкость – количество тепла, позволяющее осуществить нагрев одного килограмма стройматериала на один градус по Цельсию;
  • плотность – определяется наличием внутренних пор.

Ниже будет приведено описание различных типов изделий.

Виды кирпичей

Керамический

Изготавливают из глины с добавлением определенных веществ. После изготовления подвергают термической обработке в специализированных печах. Показатель удельной теплоемкости составляет 0.7 – 0.9 кДж, а плотность – около 1300–1500 кг/м

3.

Сегодня многие производители выпускают керамическую продукцию. Такие изделия отличаются не только размерами, но и своими свойствами. Например, теплопроводность керамического блока гораздо ниже, чем обычного. Это достигается за счет большого количества пустот внутри. В пустотах находится воздух, который плохо проводит тепло.

Свойства керамического кирпича

Силикатный

Силикатный кирпич пользуется высоким спросом в строительстве, популярность обусловлена прочностью, доступностью и низкой стоимостью. Показатель удельной теплоемкости составляет 0.75 – 0.85 кДж, а его плотность – от 1000 до 2200 кг/м

3.

Продукт имеет хорошие звукоизоляционные свойства. Стена из силикатного изделия будет изолировать сооружение от проникновения различного рода шума. Его чаще всего используют для возведения перегородок. Продукт широко применяется в качестве промежуточного слоя в кладке, выполняющего роль звукоизолятора.

Схема силикатного кирпича

Облицовочный

Облицовочные блоки широко распространены при отделке наружных стен зданий не только из-за привлекательного внешнего вида. Удельная теплоемкость кирпича – 900 Дж, а значение плотности находится в пределах 2700 кг/м3. Такое значение дает возможность материалу хорошо противостоять проникновению влаги сквозь кладку.

Характеристики облицовочного кирпича

Огнеупорный

Огнеупорные блоки можно разделить на несколько видов:

Виды огнеупорного кирпича

  • карборундовые;
  • магнезитовые;
  • динасовые;
  • шамотные.

Огнестойкие изделия применяются для постройки высокотемпературных печей. Их плотность составляет 2700 кг/м3. Теплоемкость каждого из видов зависит от условий изготовления. Так, индекс теплоемкости у карборундового кирпича при температуре 1000о С составляет 780 Дж. Шамотный кирпич при температуре 100о С имеет индекс 840 Дж, а при 1500о С этот параметр повысится до 1.25 кДж.

Влияние температурного режима

На качества большое влияние оказывает температурный режим. Так, при средней плотности материала теплоемкость может отличаться, в зависимости от температуры окружающей среды.

Таблица сравнения теплопроводности бревна с кирпичной кладкой

Из вышеперечисленного следует, что подбирать стройматериал необходимо, исходя из его характеристик и дальнейшей области его применения. Так удастся построить помещение, которое будет отвечать необходимым требованиям.

Видео по теме: Виды кирпича


Таблица теплопроводности кирпича, его плотность, морозостойкость и теплоемкость

Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:

  • Силикатный – рядовой, лицевой, пустотелый, полнотелый.
  • Керамический – жаростойкий и все разновидности предыдущего вида.
  • Клинкерный – для облицовки фасадов.

Оглавление:

  1. Коэффициент теплопроводности
  2. Что такое теплоемкость?
  3. Значение морозостойкости

Теплотехнические характеристики

Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.

Коэффициент теплопроводности

Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.

Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:

  • ≤ 0.20 – высокая;
  • 0.2 < λ ≤ 0.24 – повышенная;
  • 0.24 — 0.36 – эффективная;
  • 0.36 — 0.46 – условно-эффективная;
  • ˃ 0.46 – обыкновенная (малоэффективная).

Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.

Видλ, Вт/м°C
Красный полнотелый0,56 ~ 0,81
-//- пустотелый0,35 ~ 0,87
Силикатный кирпич полнотелый0,7 ~ 0,87
-//- пустотелый0,52 ~ 0,81

Теплопроводность красного изделия ниже, чем у силикатного.

Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:

  • Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
  • Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.

Теплоемкость

Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:

  • Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
  • Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.
Вид изделияУдельная теплоемкость, Дж/кг*°С
Красный полнотелый880
пустотелый840
Силикатный полнотелый840
пустотелый750

Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:

  • Применение теплоизоляции.
  • Нанесение штукатурки.
  • Использование пустотного кирпича или камня (исключено для фундамента здания).
  • Кладочный раствор с оптимальными теплотехническими параметрами.

Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:

Плотность, кг/м³Удельная теплоемкость, кДж/кг*°СКоэффициент теплопроводности, Вт/м*°C

Обыкновенный глиняный кирпич на различном кладочном растворе

Цементно-песчаный18000.880.56
Цементно-перлитовый16000.880.47

Силикатный

Цементно-песчаный18000.880.7

Пустотный красный различной плотности (кг/м³) на ЦПС

140016000. 880.47
130014000.880.41
100012000.880.35

Морозостойкость кирпичной кладки

Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.

Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.

Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.

Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:

  • Применение паро- и гидроизоляции.
  • Обработка кладки гидрофобными составами.
  • Контроль, своевременное исправление дефектов.
  • Надежная гидроизоляция фундамента.

От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.

нюансы и особенности, таблица значений

Опубликовано:

09.09.2015

На самом деле, выбирая строительные материалы для возведения той или иной постройки, в обязательном порядке нужно обращать внимание на их физические величины. И удельная теплоемкость кирпича в рассматриваемом вопросе не является исключением. Но, конечно же, чтобы понять, какое влияние оказывает физическая величина на кирпич, необходимо изначально разобраться в том, что она, собственно, из себя представляет.

Таблица сравнения теплопроводности бревна с кирпичной кладкой.

На какие показатели необходимо обращать внимание при выборе кирпича?

  1. Удельная теплоемкость – это показатель того, какое именно количество тепла требуется, чтобы нагреть 1 кг вещества, приходящийся на 1°С.
  2. Также огромное значение для кирпича имеет показатель теплопроводности. Он указывает на то, в каком количестве материал может передавать тепло как с внутренней, так и с внешней стороны при разных температурных режимах.
  3. То, каким будет показатель теплопередачи, полностью зависит от того, какой именно материал вы приобретаете для строительства здания. Для того чтобы узнать итоговый показатель для стены с многочисленными слоями, необходимо исходить из показателя теплопроводности для каждого отдельного слоя.

Как определяется удельная теплоемкость?

Большой популярностью пользуется силикатный кирпич. Его получают в процессе смешивания извести с песком.

Удельная теплоемкость определяется в ходе лабораторных исследований. Данный показатель полностью зависит от того, какую именно температуру имеет материал. Параметр теплоемкости необходим для того, чтобы в итоге можно было понять, насколько теплоустойчивыми будут являться внешние стены отапливаемого здания. Ведь стены сооружений нужно строить из материалов, удельная теплоемкость которых стремится к максимуму.

Помимо этого, данный показатель необходим для проведения точных расчетов в процессе подогрева различного рода растворов, а также в ситуации, когда работы производятся при минусовой температуре.

Нельзя не сказать и про полнотелые кирпичи. Именно данный материал может похвастаться высоким показателем теплопроводности. Следовательно, в целях экономии как нельзя кстати подойдет пустотелый кирпич.

Виды и нюансы кирпичных блоков

Для того чтобы в итоге возвести достаточно теплое кирпичное здание, изначально нужно понимать, какой именно вид данного материала подойдет для этого в наибольшей степени. В настоящее время на рынках и в строительных магазинах представлен огромный ассортимент кирпича. Так какому же отдать предпочтение?

На территории нашей страны огромной популярностью у покупателей пользуется силикатный кирпич. Этот материал получают в процессе смешивания извести с песком.

Таблица теплопроводности материалов.

Востребованность силикатного кирпича связана с тем, что он достаточно часто применяется в быту и имеет достаточно приемлемую цену. Если же коснуться вопроса физических величин, то тут данный материал, конечно, во многом уступает своим собратьям. В связи с низким показателем теплопроводности выстроить по-настоящему теплый дом из силикатного кирпича вряд ли получится.

Но, конечно же, как и у любого материала, у силикатного кирпича есть свои плюсы. К примеру, он обладает высоким показателем звукоизоляции. Именно по этой причине его очень часто используют для возведения перегородок и стен в городских квартирах.

Второе почетное место в рейтинге востребованности занимает керамический кирпич. Его получают из размешивания различных видов глин, которые в последующем обжигают. Данный материал применяют для непосредственного возведения зданий и их облицовки. Строительный тип используется для постройки зданий, а облицовочный – для их отделки. Стоит сказать и про то, что кирпич на основе керамики совсем небольшой по весу, поэтому он является идеальным материалом для самостоятельного осуществления строительных работ.

Новинкой строительного рынка является теплый кирпич. Это не что иное, как усовершенствованный блок из керамики. Данный тип по своим размерам может превышать стандарт примерно в четырнадцать раз. Но это никоим образом не влияет на общую массу постройки.

Если сравнивать данный материал с керамическим кирпичом, то первый вариант в вопросе теплоизоляции в два раза лучше. У теплого блока имеется большое количество мелких пустот, которые выглядят как каналы, расположенные в вертикальной плоскости.

А как известно, чем больше воздушного пространства присутствует в материале, тем выше показатель теплопроводности. Потеря тепла в данной ситуации происходит в большинстве случаев на перегородках внутри или в швах кладки.

Теплопроводность кирпича и пеноблоков: особенности

Данное вычисление необходимо для того, чтобы можно было отразить свойства материала, которые выражаются в отношении показателя плотности материала к его свойству проводить тепло.

Теплотехническая однородность – это показатель, который равен обратному отношению потока тепла, проходящему через конструкцию стены, к количеству тепла, проходящему через условную преграду и равному общей площади стены.

На самом деле и тот, и другой вариант вычисления является достаточно сложным процессом. Именно по этой причине если у вас нет опыта в данном вопросе, то лучше всего обратиться за помощью к специалисту, который сможет в точности произвести все расчеты.

Итак, подводя итоги, можно говорить о том, что физические величины очень важны при выборе строительного материала. Как вы смогли увидеть, разные типы кирпича, в зависимости от своих свойств, обладают рядом достоинств и недостатков. К примеру, если вы хотите возвести действительно теплое здание, то вам лучше всего отдать предпочтение теплому виду кирпича, у которого показатель теплоизоляции находится на максимальной отметке. Если же вы ограничены в деньгах, то оптимальным вариантом для вас станет покупка силикатного кирпича, который хоть и минимально сохраняет тепло, зато прекрасно избавляет помещение от посторонних звуков.

Кирпич Теплоемкость — Энциклопедия по машиностроению XXL

Массовую теплоемкость других веществ определяют по опытным данным так, для стали массовая теплоемкость равна 0,46, для кирпича 0,84, для каменного угля 0,72, для мазута 2,1 кдж кг-град).[c.28]

Для воды коэффициент теплоемкости равен 1 ккал/кг град. Коэффициент теплоемкости теплоизоляционных материалов и изделий значительно ниже, чем у воды, так, например, асбест, диатомит, трепел, цемент имеют коэффициент теплоемкости 0,2 ккал/кг град пробка, торф — 0,45 ккал/кг град пористый кирпич, легкий бетон — 0,21 ккал/кг-град.  [c.21]


На установке получены экспериментальные данные о температуропроводности образцов магнезитового, хромомагнезитового и шамотного кирпича (рис. 3). Данные опытов удовлетворительно согласуются с расчетными значениями коэффициента температуропроводности, вычисленными с использованием коэффициента теплопроводности и теплоемкости по данным [5, 6]. Основным препятствием для исследования огнеупоров выше 1500—1600°С является химическое взаимодействие термоэлектродов с образцом. По этой причине температуропроводность хромомагнезитового кирпича удалось определить при температуре только до 1600° С.[c.269]

С—удельная теплоемкость красного кирпича, 0,19 ккал кг-  [c.57]

На сооружение теплоемких печей требуется большое количество кирпича, рабочей силы и времени. Установка их в помещении заметно сокращает жилую площадь. При периодической одноразовой топке печи в отапливаемом помещении создается неравномерный температурный режим в течение суток.  [c.91]

Если при нагреве от О до 400° и от О до 1 400° передается кирпичу соответственно 88,9 и 379 al, а от О до 200° и от О до 1 200°—38,7 и 316,3 al, то нагрев от 400 до 1 400° и от 200-до 1 200° требует соответственно 290,1 и 277,6 al, что указывает на среднюю теплоемкость в этих пределах i° 0,2901 и 0,2776 или в среднем (если 1 200 и 1 400°—крайние-i° насадки в верхнем ряду, а 200 и 400°— внизу) 0,284. Эту теплоемкость и можно рекомендовать для расчета насадок сталеплавильных печей, обладающих наивысшей средней i°. Для насадок с более низкой следует брать меньшее значение (в кауперах 0,28), однако все же не ниже 0,27 в обычных случаях применения регенераторов (вместо 0,22—0,24). Обычная форма и размеры огнеупорного кирпича, уложенного на ребро по Сименсу или Кауперу, хорошо удовлетворяют условиям теплопередачи, но предложено много патентованных форм кирпича и способов их укладки в насадках, по поводу которых необходимо сказать, что если они в том же объеме регенераторов дают меньший или же одинаковый вес насадки, как и обыкновенный кирпич, то применение их не имеет смысла, так как стоимость всякого фасон-  [c.128]

Материалы стены имеют следующие значения коэффициентов теплопроводности X ккал м-ч-град, удельной теплоемкости с ккал кг-град и объемного Беса V кг м кирпичная кладка из глиняного кирпича на тяжелом растворе Я,=0,7 с=0,21 =1800 пенобетон >.=0,18 с=0,2 =600.  [c.100]

Теплоемкость с, кДж/(кг-°С), и коэффициент теплопроводности Вт/ м-°С), кирпича насадки рассчитываем по следующим формулам ( — температура) для динаса  [c.274]

Для расчетов удельную теплоемкость материала (кирпич красный) принимаем равной Сг = 0,711 кДж/кг К, плотность воды Pi = 10 кг/м , плотность материала для красного кирпича в зависимости от пористости >2 = (1,7. .. 2,1)-10 кг/м. Плотность влажного материала рассчитывается по формуле  [c.88]


С)72 = 0,711 10 Дж/кг К — теплоемкость красного кирпича,  [c.90]

Чем больше теплоем,кость огнеупорной кладки, тем большее количество тепла она содержит при одной и той же температуре нагрева. Высокой теплоемкостью должен обладать кирпич, из которого выкладывают устройства для нагрева воздуха и газа — насадки, чтобы передать нагреваемому воздуху или газу большее количество тепла.  [c.18]

Керамическое волокно характеризуется низкой объемной плотностью (в 2—4 раза легче огнеупорного изоляционного кирпича), малой теплоемкостью (0,25 ккал/кг, °С), низким коэффициентом теплопроводности, высокой устойчивостью против механических нагрузок и вибраций, инертностью к воде и водяному пару, различным маслам и кислотам.  [c.79]

Физические свойства кирпича. Уд. в. обыкновенного красного кирпича составляет 2,4—2,6 объемн. в.—1,75—2,0 з/с.м . Вес кирпича стандартного размера 250 х 120 X 65 мм составляет 3,5—3,9 кг вес кирпича старого формата, 6x3x1,5 вершка,—около 4,0 кг. В 1 стенной кладки помещается ок. 400 штук стандартного кирпича. Теплоемкость красного кирпича при 17—100° составляет по данным Ф. Зингера 0,189—0,244. Теплопроводность приведена в табл. 1, стандартные свойства—в табл. 2.  [c.108]

Второй пример. Определение удельной теплоемкости порошка инфузорного кирпича при t = 20°. В качестве ламбдакалориметра использован медный шар. Его размеры / 2=3,025 10 / i=2,94 10 .  [c.294]

Термостойкость определяют по стандарту путем одностороннего нагрева кирпичей при 1300 С и охлаждения в воде, нормируют количество теплосмен до 20 % потери массы испытываемых образцов. В ряде ТУ оговорены другие условия (охлаждение на воздухе, наличие трещин после теплосмены и т. д.). Огнеупоры в службе часто испытывают температурные колебания, нередко довольно резкие, поэтому термостойкости при выборе огнеупора приходится придавать серьезное значение. Имеется еще ряд технических характеристик огнеупоров, очень редко нормируемых или совсем не нормируемых действующими ГОСТами и ТУ шлакоустойчивость, теплопроводность, газопроницаемость, теплоемкость и некоторые другие. Эти показатели определяют в институтах и заводских лабораториях в ходе исследовательских работ, или по отдельным задан1 ям. В некоторых случаях при специфических требованиях потребителя (например, для фур.м продувки металла) устанавливается показатель газопроницаемости, а для легковесных огнеупоров — требования по теплопроводности.  [c.19]

Стены (см.) должны удовлетворять условиям устойчивости и прочности, быгь малотеплопроводными, достаточно теплоемкими, воздухопроницаемыми, сухими и экономичными. Толстые массивные стены заменяются в настоящее время легкими Большое применение имеют каркасные стены, состоящие из металлического, каменного или желевобегон-ного каркаса, с заполнением его различными материалами-заполнителями — в виде листов, плиг или отдельных легких камней. Легкий бетон, облегченные кирпичи и теплый раствор при кладке иа обыкновенного кирпича — все это весь.ма распространенные стеновые материалы. Ж. 3. в большинстве случаев делаются из древесины. Облегчение и упрощение междуэтажных перекрытий (см.) достигается сокращением длины перекрываемых пролетов, а следовательно и размеров балок, уменьшением толщины пиломатериалов, идущих на изготовление чистых и черных полов и для подшивки. При устройстве перекрытий по железным балкам заполнение между ними делается такое же, как и при деревянных балках, или же огнестойкое — бетонное, железобетонное, а также из легких и прочных плит. К недостаткам огнестойких перекрытий относится их большая звукопроводность, устранение которой вызывает значительные затраты.  [c.25]

АККУМУЛИРОВАНИЕ ТЕПЛА, собирание в запас тепла отходящих газов (в доменном и мартеновском производстве, в дизельных установках), тепла избыточного пара, использование излишков электрич. энергии для нагрева воды или получения пара (электрокотлы), собирание излишков горячей воды в баках и т. п. Для А. т. служат б. ч. вода и твердые тела, обладаютцие большой уд. теплоемкостью, напр, шамотный кирпич, чугун. В лростей1нем виде А. т. применяется в доменном, мартеновском производстве отходящие газы печей отдают свое тепло в так называемых кауперах клеткам, выложенным из кирпича, от которых затем нагревается пропускаемый через кауперы дутьевой воздух. Широкое применение имеет А. т. в теплосиловых установках, в которых оно, с одной стороны, выравнивает ко.пебания в работе отдельных элементов теплосиловой установки и повышает ее кпд, с другой, — устраняет перебои в снабжении паром и энергией производственных цехов, облегчает ведение технологических процессов и в некоторых случаях даже увеличивает производительность предприятия. Нельзя также недооценивать значения А. т. как фактора, повышающего надежность экс-  [c.219]


По сравнению с другими строительными материалами (железом, кирпичом, бетоном) коэф. линейного расширения Д. вдоль волокон значительно меньше (в 5—10 раз), что является весьма пенной особенностью Д., позволяющей отказаться в деревянных конструкциях от темп-рных швов. Способность поглощать тепло называется теплоемкостью и характеризуется удельной теплоемкостью. Теплоемкость абсолютно сухой Д. почти не зависит от породы и в пределах темп-ры от О до 160° в среднем равна 0,327, т. е. в три раза меньше, чем для поды (Dunlap). Колебания удельной теплоемкости для Д. разньсх пород не выходят из пределов 3%. Большое влияние на теплоемкость Д. оказывает ее влажность во влажной Д. об[цая теплоемкость складывается из теплоемкости древесного вещества и воды, а т. к. теплоемкость воды больше воздуха, к-рый она заменяет в Д., то теплоемкость Д. увеличивается с возрастанием влажности. Теплоемкость Д. имеет большое значение в тех случаях, когда Д. подвергается нагреванию. Напр, при расчете сушильных, парильных и варочных устройств необходимо знать теплоемкость Д., т. к. от этого зависит количество тепла, теряемого с выгружаемым материалом. Равным образом при сухой перегонке  [c.100]

Здесь ад и в — коэффициенты теплоотдачи от продуктов еюрания к Стенке и от стенки к воздуху (газу), Вт/(м2-°С) Тд и Тв — длительность дымового и воздушного (газового) периодов, ч ijj — коэффициент, корректирующий внутреннее тепловое сопротивление насадки при реальных циклических условиях ес работы 5э — эффективная полутолщина кирпича, м X—коэффициент теплопроводности материала кирпича, Bt/( I ° ) р — объемная плотность кирпича насадки, кг/м с — теплоемкость кирпича насадки, кДж/(кг-°С) —коэффициент гистерезиса температуры насадки средней по массе в дымовой и воздушный периоды.  [c.264]

Для оценки напряженности полей тепловых потоков в топках паровых котлов М. В. Кирпичев и Г. М. Кондратьев разработали довольно простое устройство, состоящее из массивного медного цилиндра с заделанной в него термопарой. Количество усвоенного блоком тепла измерялось по времени прогрева цилиндра в определенном интервале температур при известной теплоемкости блока. В дальнейшем подобное устройство использовалось Бауэ-ком и Трингом [250], а Р. Газе заменил цилиндрическую форму приемника потока шаровой.  [c.23]

Достоверность научно-методологических основ определения темнературонроводности, объемной теплоемкости и теплопроводпости по температурному нолю на поверхности проводилось на призме из бетопа, фторопласта, красного и силикатного кирпича. Для измерения температуры ребра и середины грани методом перазрушающего контроля на призме квадратного сечения закреплялись термопары с использованием контактного устройства, схема и описание которого приведена в разделе 7.5.  [c.102]


Удельная теплоемкость кирпича: нюансы и особенности

Физические величины имеют высокую значимость при выборе материала для строительства здания. Рассмотрим основные показатели, используемые в строительстве, например, чтобы разобраться, что такое удельная теплоемкость кирпича, необходимо выяснить, что представляет собой данная физическая величина.

Кирпич

Итак:

  • Теплоемкость. По сути, удельная теплоёмкость определяется количеством тепла, требуемого для нагрева одного килограмма вещества на один градус Цельсия (на один Кельвин).
  • Теплопроводность.Не менее важным физическим показателем кирпичного сооружения является способность передачи тепла при разных температурах снаружи и внутри здания, называемая коэффициентом теплопроводности. Этот параметр выражает, какое количество тепла, теряется за 1 метр толщины стены при различии температуры на 1 градус между наружной и внутренней областью.
  • Теплопередача. Коэффициент теплопередачи кирпичной стены будет во многом зависеть от того, какой вид материала для кирпичной кладки вы выберете. Чтобы определить данный коэффициент для многослойной стены, требуется знать этот параметр для каждого слоя в отдельности. Затем складываются все величины, так как суммарный коэффициент термосопротивления является суммой сопротивлений всех слоев, входящих в стену.

Коэффициент теплопроводности кирпича и пеноблока

Обратите внимание! Полнотелые кирпичи обладают довольно высоким коэффициентом теплопроводности и поэтому гораздо более экономично применение пустотелого вида. Это происходит из-за того, что воздух в пустотах обладает более низкой теплопроводностью, а значит, стены сооружения будут значительно тоньше.

  • Сопротивление теплопередаче. Сопротивление теплопередаче кирпичной стены определяется как отношение разности температур на краях строительной конструкции к количеству тепла проходящего через него. Данный параметр используется для отражения свойств материалов и выражается отношением плотности материала к его теплопроводности.
  • Теплотехническая однородность. Коэффициент теплотехнической однородности кирпичной стены это параметр равный обратному отношению потока тепла через стену к количеству тепла, проходящего через условное ограждающее сооружение равное по площади стене.

Таблица сравнения теплопроводности древесины и кирпича

Обратите внимание! Инструкция о том, как рассчитать данный параметр, довольно сложна, поэтому этим лучше заниматься компаниям, имеющим опыт и соответствующие приборы для определения тех или иных показателей.

По сути, коэффициент теплотехнической однородности для кирпичной кладки выражает, сколько и какую интенсивность имеют «мостики холода» в данной ограждающей конструкции. В большинстве случаев данная величина колеблется в пределах 0,6-0,99, причём за единицу берется полностью однородная стена, не имеющая теплопроводных изъянов.

Сравнительная характеристика основных строительных материалов по базовым показателям

ВИДЫ КИРПИЧА

Для того чтобы ответить на вопрос: «как построить теплый дом из кирпича?», нужно выяснить какой лучше всего использовать его вид. Так как современный рынок предлагает огромный выбор данного строительного материала. Рассмотрим наиболее распространенные виды.

СИЛИКАТНЫЙ

Силикатный кирпич

Наиболее высокую популярность и широкое распространение в строительстве на территории России имеют силикатные кирпичи. Данный вид изготавливается путем смешения извести и песка. Высокую распространённость этот материал получил благодаря широкой области применения в быту, а также из-за того, что цена на него довольно не высока.

Однако если обратиться к физическим величинам этого изделия, то тут не все так гладко.

Рассмотрим двойной силикатный кирпич М 150. Марка М 150 говорит о высокой прочности, так что он даже приближается к природному камню. Размеры составляют 250х120х138 мм.

Теплопроводность данного типа в среднем составляет 0,7 Вт/(м оС). Это достаточно низкий показатель, по сравнению с другими материалами. Поэтому теплые стены из кирпича такого типа скорей всего не получатся.

Немаловажным достоинством такого кирпича по сравнению с керамическим, являются звукоизоляционные свойства, которые очень благоприятно сказываются на строительстве стен ограждающих квартиры или разделяющих комнаты.

КЕРАМИЧЕСКИЙ

Керамический кирпич

Второе место по популярности строительных кирпичей обоснованно отдано керамическим. Для их производства различные смеси глин подвергают обжигу.

Данный вид делится на два типа:

  1. Строительный,
  2. Облицовочный.

Строительный кирпич используется для возведения фундаментов, стен домов, печей и т.д., а облицовочный для отделки зданий и помещений. Такой материал больше подходит для строительства своими руками, так как он значительно легче силикатного.

Теплопроводность керамического блока определяется коэффициентом теплопроводности и численно равна:

  • Полнотелый – 0,6 Вт/м* оС;
  • Пустотелый кирпич — 0,5 Вт/м* оС;
  • Щелевой – 0,38 Вт/м* оС.

Средняя теплоемкость кирпича составляет около 0,92 кДж.

ТЕПЛАЯ КЕРАМИКА

Теплая керамика

Теплый кирпич — относительно новый строительный материал. В принципе, он является усовершенствованием обычного керамического блока.

Данный вид изделия значительно больше обычного, его размеры могут быть в 14 раз больше стандартных. Но это не очень сильно сказывается на общей массе конструкции.

Теплоизоляционные свойства практически в 2 раза лучше, по сравнению с керамическим кирпичом. Коэффициент теплопроводности приблизительно равен 0,15 Вт/м* оС.

Свойства теплой керамики

Блок теплой керамики имеет много мелких пустот в виде вертикальных каналов. А как говорилось выше, чем больше воздуха в материале, тем выше теплоизоляционные свойства данного строй-материала. Теплопотери могут возникать в основном на внутренних перегородках или же в швах кладки.

РЕЗЮМЕ

Надеемся, наша статья поможет вам разобраться в большом количестве физических параметров кирпича и выбрать для себя наиболее подходящий вариант по всем показателям! А видео в этой статье предоставит дополнительную информацию по этой теме, смотрите.



Плотность, теплоемкость, теплопроводность

О кирпиче

Кирпич — это конструкционные изделия из глины, выпускаемые как стандартные единицы, используемые в строительстве. Три основных типа кирпича — это необожженный, обожженный и химически закрепленный кирпич. Каждый тип изготавливается по-своему. Обожженные кирпичи обжигаются в печи, что делает их долговечными. Современные обожженные глиняные кирпичи формуются одним из трех способов — мягким глинистым раствором, сухим прессованием или прессованием. В зависимости от страны наиболее распространенным является метод экструдированного или мягкого шлама, так как они являются наиболее экономичными.

Сводка

Имя Кирпич
Фаза на STP цельный
Плотность 1700 кг / м3
Предел прочности на разрыв 2,8 МПа
Предел текучести НЕТ
Модуль упругости Юнга НЕТ
Твердость по Бринеллю НЕТ
Точка плавления 1727 ° С
Теплопроводность 1.31 Вт / м · К
Теплоемкость 800 Дж / г К
Цена 0.2 $ / кг

Плотность кирпича

Типичные плотности различных веществ указаны при атмосферном давлении. Плотность определяется как масса на единицу объема . Это интенсивное свойство , которое математически определяется как масса, разделенная на объем: ρ = м / В

Проще говоря, плотность (ρ) вещества — это общая масса (m) этого вещества, деленная на общий объем (V), занимаемый этим веществом.Стандартная единица СИ составляет килограммов на кубический метр ( кг / м 3 ). Стандартная английская единица — фунтов массы на кубический фут ( фунтов / фут 3 ).

Плотность кирпича 1700 кг / м 3 .

Пример: плотность

Вычислите высоту куба из кирпича, который весит одну метрическую тонну.

Решение:

Плотность определяется как масса на единицу объема .Математически это определяется как масса, разделенная на объем: ρ = м / В

Поскольку объем куба равен третьей степени его сторон (V = a 3 ), высоту этого куба можно вычислить:

Тогда высота этого куба составляет a = 0,838 м .

Плотность материалов

Механические свойства кирпича

Прочность кирпича

В механике материалов прочность материала — это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации. Сопротивление материалов в основном рассматривает взаимосвязь между внешними нагрузками , приложенными к материалу, и результирующей деформацией или изменением размеров материала. При проектировании конструкций и машин важно учитывать эти факторы, чтобы выбранный материал имел достаточную прочность, чтобы противостоять приложенным нагрузкам или силам, и сохранять свою первоначальную форму.

Прочность материала — это его способность выдерживать эту приложенную нагрузку без разрушения или пластической деформации.Что касается растягивающего напряжения, способность материала или конструкции выдерживать нагрузки, имеющие тенденцию к удлинению, известна как предел прочности при растяжении (UTS). Предел текучести или предел текучести — это свойство материала, определяемое как напряжение, при котором материал начинает пластически деформироваться, тогда как предел текучести — это точка, в которой начинается нелинейная (упругая + пластическая) деформация. В случае растягивающего напряжения однородного стержня (кривая «напряжение-деформация»), закон Гука описывает поведение стержня в упругой области.Модуль упругости Юнга представляет собой модуль упругости для растягивающего и сжимающего напряжения в режиме линейной упругости при одноосной деформации и обычно оценивается с помощью испытаний на растяжение.

См. Также: Сопротивление материалов

Предел прочности кирпича на разрыв

Предел прочности кирпича на разрыв 2,8 МПа.

Предел текучести кирпича

Предел текучести кирпича — N / A.

Модуль упругости кирпича

Модуль упругости кирпича Юнга равен N / A.

Твердость кирпича

В материаловедении твердость — это способность противостоять вдавливанию поверхности ( локализованная пластическая деформация ) и царапинам . Испытание на твердость по Бринеллю — это одно из испытаний на твердость при вдавливании, которое было разработано для испытания на твердость. При испытаниях по Бринеллю твердый сферический индентор под определенной нагрузкой вдавливается в поверхность испытываемого металла.

Число твердости по Бринеллю (HB) — это нагрузка, деленная на площадь поверхности вдавливания.Диаметр слепка измеряют с помощью микроскопа с наложенной шкалой. Число твердости по Бринеллю рассчитывается по формуле:

Твердость кирпича по Бринеллю составляет приблизительно N / A.

См. Также: Твердость материалов

Пример: Прочность

Предположим, пластиковый стержень, сделанный из кирпича. Этот пластиковый стержень имеет площадь поперечного сечения 1 см 2 . Рассчитайте растягивающее усилие, необходимое для достижения предельного значения прочности на растяжение для этого материала, которое составляет: UTS = 2.8 МПа.

Решение:

Напряжение (σ) можно приравнять к нагрузке на единицу площади или силе (F), приложенной к площади поперечного сечения (A), перпендикулярной силе, как:

, следовательно, сила растяжения, необходимая для достижения предела прочности на разрыв, составляет:

F = UTS x A = 2,8 x 10 6 x 0,0001 = 280 N

Сопротивление материалов

Упругость материалов

Твердость материалов

Тепловые свойства кирпича

Кирпич — точка плавления

Температура плавления кирпича 1727 ° C .

Обратите внимание, что эти точки связаны со стандартным атмосферным давлением. В общем, плавление представляет собой фазовый переход вещества из твердой фазы в жидкую. Точка плавления вещества — это температура, при которой происходит это фазовое изменение. Точка плавления также определяет состояние, в котором твердое вещество и жидкость могут существовать в равновесии. Для различных химических соединений и сплавов трудно определить температуру плавления, поскольку они обычно представляют собой смесь различных химических элементов.

Кирпич — теплопроводность

Теплопроводность кирпича 1,31 Вт / (м · К) .

Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), измеренным в Вт / м · K . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье применяется ко всему веществу, независимо от его состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.

Теплопроводность большинства жидкостей и твердых тел зависит от температуры. Для паров это также зависит от давления. Всего:

Большинство материалов почти однородны, поэтому обычно можно записать k = k (T) . Подобные определения связаны с теплопроводностью в направлениях y и z (ky, kz), но для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.

Кирпич — удельная теплоемкость

Удельная теплоемкость кирпича 800 Дж / г K .

Удельная теплоемкость, или удельная теплоемкость, — это свойство, связанное с внутренней энергией , которое очень важно в термодинамике. Интенсивные свойства c v и c p определены для чистых простых сжимаемых веществ как частные производные внутренней энергии u (T, v) и энтальпии ч. (Т, п) , соответственно:

, где индексы v и p обозначают переменные, фиксированные во время дифференцирования.Свойства c v и c p упоминаются как удельная теплоемкость (или теплоемкость ), потому что при определенных особых условиях они связывают изменение температуры системы с количеством энергии, добавленной за счет теплопередача. Их единицы СИ: Дж / кг K или Дж / моль K .

Пример: расчет теплопередачи

Теплопроводность определяется как количество тепла (в ваттах), передаваемое через квадратную площадь материала заданной толщины (в метрах) из-за разницы температур.Чем ниже теплопроводность материала, тем выше его способность сопротивляться теплопередаче.

Рассчитайте скорость теплового потока через стену площадью 3 x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1,31 Вт / м · К (плохой теплоизолятор). Предположим, что внутренние и внешние температуры составляют 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах равны h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 K соответственно.Обратите внимание, что эти коэффициенты конвекции сильно зависят, особенно, от внешних и внутренних условий (ветер, влажность и т. Д.).

Рассчитайте тепловой поток ( потери тепла ) через эту стену.

Решение:

Как было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию проводимости и конвекции . С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор .Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии проблемы.

Предполагая одномерную теплопередачу через плоскую стенку и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен: U = 1 / (1/10 + 0.15 / 1,31 + 1/30) = 4,03 Вт / м 2 K

Тепловой поток можно рассчитать просто как: q = 4,03 [Вт / м 2 K] x 30 [K] = 121,05 Вт / м 2

Суммарные потери тепла через эту стену будут: q потери = q. A = 121,05 [Вт / м 2 ] x 30 [м 2 ] = 3631,42 Вт

Температура плавления материалов

Теплопроводность материалов

Теплоемкость материалов

Свойства и цены на другие материалы

таблица материалов в разрешении 8k

Удельная теплоемкость материалов

Таблица удельной теплоемкости

Удельная теплоемкость материалов от воды до урана указана ниже в алфавитном порядке.
Ниже этой таблицы представлена ​​версия изображения для просмотра в автономном режиме.

Материал Дж / кг. К Британских тепловых единиц / фунт ° F Дж / кг. ° C кДж / кг. К
Алюминий 887 0,212 887 0,887
Асфальт 915 0,21854 915 0,915
Кость 440 0,105 440 0.44
Бор 1106 0,264 1106 1,106
Латунь 920 0,220 920 0,92
Кирпич 841 0,201 841 0,841
Чугун 554 0,132 554 0,554
Глина 878 0.210 878 0,878
Уголь 1262 0,301 1262 1,262
Кобальт 420 0,100 420 0,42
Бетон 879 0,210 879 0,879
Медь 385 0,092 385 0,385
Стекло 792 0.189 792 0,792
Золото 130 0,031 130 0,13
Гранит 774 0,185 774 0,774
Гипс 1090 0,260 1090 1.09
Гелий 5192 1,240 5192 5,192
Водород 14300 3.415 14300 14,3
Лед 2090 0,499 2090 2,09
Утюг 462 0,110 462 0,462
Свинец 130 0,031 130 0,13
Известняк 806 0,193 806 0,806
Литий 3580 0.855 3580 3,58
Магний 1024 0,245 1024 1.024
Мрамор 832 0,199 832 0,832
Меркурий 126 0,030 126 0,126
Азот 1040 0,248 1040 1.04
Дуб 2380 0.568 2380 2,38
Кислород 919 0,219 919 0,919
Платина 150 0,036 150 0,15
Плутоний 140 0,033 140 0,14
Кварцит 1100 0,263 1100 1,1
Резина 2005 0.479 2005 2,005
Соль 881 0,210 881 0,881
Песок 780 0,186 780 0,78
Песчаник 740 0,177 740 0,74
Кремний 710 0,170 710 0,71
Серебро 236 0.056 236 0,236
Почва 1810 0,432 1810 1,81
Нержавеющая сталь 316 468 0,112 468 0,468
Пар 2094 0,500 2094 2,094
сера 706 0,169 706 0,706
торий 118 0.028 118 0,118
Олово 226 0,054 226 0,226
Титан 521 0,124 521 0,521
Вольфрам 133 0,032 133 0,133
Уран 115 0,027 115 0,115
Вандий 490 0.117 490 0,49
Вода 4187 1.000 4187 4,187
цинк 389 0,093 389 0,389

Таблицы удельной теплоемкости обычных материалов [/ caption]

Предыдущая статьяЦель градиренСледующая статьяЧто сейчас? Основы электроэнергетики

Удельная теплоемкость | IOPSpark

Удельная теплоемкость

Энергия и теплофизика

Удельная теплоемкость

Глоссарий Определение для 16-19

Описание

Удельная теплоемкость — это свойство материала, которое связывает изменения температуры материала с энергией, передаваемой материалу или от него при нагревании (либо при нагревании материала, либо при нагревании окружающей среды).

При повышении температуры материала путем передачи энергии материалу путем нагревания удельная теплоемкость материала определяется как энергия, передаваемая на единицу массы на единицу повышения температуры.

Удельная теплоемкость обычно обозначается символом c .

Если температура массы м материала изменится на Δ T , соответствующая энергия Q , переданная материалу при нагревании, составит

Q & равно; м в Δ T

Обсуждение

В общем, удельная теплоемкость — это мера того, сколько энергии требуется для изменения температуры системы.Но в определении важно понимать, что ввод энергии должен осуществляться за счет нагрева. Если в системе проводятся работы, в целом ее температура повышается, но вычислять повышение температуры, используя теплоемкость и объем проделанной работы, некорректно. Еще один фактор, который может иметь значение, — это ограничение, при котором поддерживается система. Удельная теплоемкость системы, находящейся в постоянном объеме, отличается от удельной теплоемкости системы, находящейся при постоянном давлении, поскольку последняя воздействует на окружающую среду при расширении.Такими различиями обычно можно пренебречь для твердых тел, но они очень важны при работе с газами.

Блок СИ

Дж кг -1 К -1

Выражается в базовых единицах СИ

м 2 с -2 К -1

Другая часто используемая единица (и)

Дж кг -1 ° C -1 , Дж кг -1 ° F -1

Математические выражения
  • Если температура массы м материала изменится на Δ T , соответствующая энергия, переданная материалу при нагревании, составит
    Q = м c Δ T
Связанные записи
  • Энергия системы
  • Внутренняя энергия
В контексте

Удельная теплоемкость воды при комнатной температуре составляет 4181 Дж кг -1 K -1 , у меди 390 Дж кг -1 K -1 и у обычного масла 2000 Дж кг -1 К -1 .Керамические материалы, такие как бетон или кирпич, имеют удельную теплоемкость около 850 Дж кг -1 K -1 .

Относительно высокая удельная теплоемкость воды означает, что она очень полезна в системах центрального отопления, поскольку она способна передавать большое количество энергии путем нагрева, в то время как ее температура изменяется на относительно небольшую величину. В накопительных нагревателях, где соответствующее вещество остается в нагревателе, предпочтительны твердые вещества, такие как глиняные кирпичи или керамические материалы, поскольку они не протекают и не разъедают свои контейнеры, хотя их более низкая удельная теплоемкость означает, что они должны быть доведены до очень высокого уровня. высокая температура для обеспечения полезного обогрева в течение нескольких часов.

Тепловые свойства строительных материалов

Предыдущие колонки технических данных охватывали тепловые свойства многих материалов, которые являются общими для упаковки электроники. Технические данные по этому вопросу шире по объему и касаются обычных строительных материалов, некоторые из которых используются в лабораторных условиях теплопередачи в дополнение к их обычным строительным применениям.Знание теплопроводности и теплоемкости элементов, используемых для создания или поддержки испытательного набора, часто требуется для понимания и интерпретации результатов (или, по крайней мере, для понимания того, почему для достижения теплового равновесия требуется так много времени).

В таблице 1 перечислены некоторые строительные материалы и их термические свойства при номинальной комнатной температуре. Металлы и сплавы не были включены, потому что они были рассмотрены ранее. Следует отметить, что эти значения являются приблизительными и репрезентативны для конкретного типа материала.Некоторые материалы поглощают воду, которая, в свою очередь, меняет их свойства. Например, теплопроводность древесины во влажном состоянии может увеличиваться на 15%. Материалы, используемые в качестве изоляторов, которые полагаются на воздух, такие как одеяла из стекловолокна, демонстрируют большее изменение свойств во влажном состоянии. Следует отметить, что диапазон значений теплопроводности для этих материалов довольно скромный (около двух порядков).

Таблица 1. Тепловые свойства конструкционного материала при комнатной температуре [1-4]

Материал Теплопроводность
(Вт / м · К) при ~ 300 К
Удельная теплоемкость
(Дж / кг · К)
Плотность
(кг / м 3)
Кирпич 0.7 840 1600
Бетон — плотный 1,4 840 2100
Бетон — легкое литье 0,4 1000 1200
Гранит 1,7 — 3,9 820 2600
Стекло (окно) 0,8 880 2700
Твердая древесина (дуб) 0.16 1250 720
Хвойные породы (сосна) 0,12 1350 510
Поливинилхлорид 0,12 — 0,25 1250 1400
Бумага 0,04 1300 930
Акустическая плитка 0,06 1340 290
ДСП (низкой плотности) 0.08 1300 590
ДСП (высокой плотности) 0,17 1300 1000
Стекловолокно 0,04 700 150
Пенополистирол 0,03 1200 50

Рост затрат на энергию и осознание того, что минимизация нежелательной теплопередачи является выгодной, по-прежнему создают стимулы для использования строительных методов и материалов с меньшим энергопотреблением.Преимущества эффективного терморегулирования внутренней электроники также должны сочетаться с термически эффективной конструкцией помещения. Использование изолирующих материалов (с низкой теплопроводностью) может быть желательным, но природа не обеспечила настоящих теплоизоляционных материалов, по крайней мере, по сравнению с диапазоном выбора материалов для электропроводности. Исследование термических свойств этих типов материалов приведет к получению данных со значительными отклонениями из-за различий в составе и различных условий испытаний.

Для многих материалов данные могут быть найдены в виде значения R. Значение R представляет собой обратную величину теплопроводности и имеет единицы измерения футы 2 ��F�h / Btu (иногда данные отображаются в единицах СИ, равных K�m 2 / Вт и обычно обозначаются как RSI). Более высокое значение R указывает на более ограниченный путь теплового потока. При условии, что указана толщина, можно получить приблизительную теплопроводность. Однако путаница и разногласия по поводу экстраполяции значений R на значение толщины и тот факт, что большинство этих материалов используются в средах с влажностью и движущимся воздухом и подвержены старению, вынудили стандарты в отношении того, как их следует измерять, сообщать и рекламировать. [5,6].Если требуются более чем приблизительные значения, обычно требуется дальнейшее тестирование.

Список литературы
  1. Incropera, F., De Witt, D., Introduction to Heat Transfer, 2nd Edition, John Wiley and Sons, 1990.
  2. www.goodfellows.com
  3. Веб-сайт удобной низкоэнергетической архитектуры (http://www.learn.londonmet.ac.uk/packages/clear/index.html)
  4. www.coloradoenergy.org/procorner/stuff/r-values.htm
  5. ASTM C1303, «Стандартный метод испытаний для оценки долговременного изменения термического сопротивления необработанных жестких пенопластов с закрытыми порами путем разрезания и масштабирования в лабораторных условиях.”
  6. Федеральная торговая комиссия «Маркировка и реклама теплоизоляции домов 16CFR460», {www.ftc .gov / bcp / rulemaking / rvalue / 16cfr460.shtm # content # content}

Таблица 6 Теплопроводность, удельная теплоемкость и плотность

Бетон

Газобетонная плита

0.160

840

500

Литой бетон (плотный)

1.400

840

2100

Литой бетон (легкий)

0,380

1000

1200

Литой бетон

1.130

1000

2000

Бетонный блок (тяжелый)

1,630

1000

2300

Бетонный блок (средний)

0,510

1000

1400

Бетонный блок (легкий)

0.190

1000

600

Павиур из бетона

0,960

840

2000

Пеношлак

0,250

960

1040

Блок из пенобетона

0,240

1000

750

Огнеупорный изоляционный бетон

0.250

837

1050

Вермикулит агрегат

0,170

837

450

Бетонная плитка

1.100

837

2100

Сушеный заполнитель для тяжелого бетона — CC01

1.310

837

2243

Тяжелый бетонный невысушенный заполнитель — CC11

1,802

837

2243

Тяжелый бетонный невыдержанный заполнитель — HF-C12

1,730

837

2243

Легкий бетон — 80 фунтов — CC21

0.36

837

1282

Легкий бетон — 30 фунтов — CC31

0,130

837

481

Легкий бетон — 40 фунтов — HF-C14

0,173

837

641

Легкий бетон — HF-C2

0.380

837

609

Тяжелый бетонный блок — пустотелый — CB01

0,812

837

1618

Тяжелый бетонный блок — с бетонным заполнением — CB02

1,310

837

2234

Тяжелый бетонный блок — наполненный перлитом — CB03

0.384

837

1650

Тяжелый бетонный блок — бетон с частичным заполнением — CB04

1.011

837

1826

Тяжелый бетонный блок — бетон и перлит с наполнителем — CB05

0,825

837

1842

Бетонный блок средней плотности — пустотелый — CB21

0.519

837

1218

Бетонный блок средней плотности — с бетонным заполнением — CB22

0,771

837

1842

Бетонный блок средней плотности — с перлитом — CB23

0,262

837

1250

Бетонный блок средней плотности — бетон с частичным заполнением — CB24

0.572

837

1426

Бетонный блок средней плотности — бетон и перлитный наполнитель — CB25

0,431

837

1442

Легкий бетонный блок — пустотелый — CB41

0,384

837

1041

Легкий бетонный блок — заполненный бетоном — CB42

0.639

837

1666

Легкий бетонный блок — наполненный перлитом — CB43

0,220

837

1073

Легкий бетонный блок — бетон с частичным заполнением — CB44

0,486

837

1250

Легкий бетонный блок — бетон и перлит с наполнителем — CB45

0.360

837

1266

Гравий, постельные принадлежности и т. Д.

Каменная крошка

0.960

1000

1800

Гравий

0,360

840

1840

Грунт на гравийной основе

0,520

184

2050

Постельное белье из плитки

1.400

650

2100

Изоляционные материалы

Плита Eps

0.035

1400

25

Кремний

0,180

1004

700

Одеяло из стекловолокна

0,040

840

12

Стекловолоконная плита

0,035

1000

25

Плита из минерального волокна

0.035

1000

30

Фенольная пена

0,040

1400

30

Полиуретановая плита

0,025

1400

30

Уф-пена

0,040

1400

10

Плита из древесной шерсти

0.100

1000

500

Вермикулитовый изоляционный кирпич

0,270

837

700

Огнеупорный изоляционный бетон

0,250

837

1050

Стекловата

0.040

670

200

Thermalite — высокопрочный

0,190

1050

760

Термалит ‘Turbo’

0,110

1050

480

Thermalite ‘Shield’ / ‘Smooth Face’

0.170

1050

650

Siporex

0,120

1004

550

P.V.C

0,160

1004

1379

Полистирол

0,030

1380

25

Твердая резина

0.150

1000

1200

Доска Cratherm

0,050

837

176

Уф-пена Два

0,030

1764

30

Уф-пена Два

0,030

1764

30

Облицовка из легкого металла

0.290

1000

1250

Плотный утеплитель для плит Eps (пенополистирол)

0,025

1400

30

Ячеистое стекло

0,050

800

136

Стекловолокно — органическое соединение

0.036

1000

100

Расширенный перлит — органическая связка

0,052

1300

16

Вспененная резина — жесткая

0,032

1700

72

Ячеистый полиуретан

0.023

1600

24

Клеточный полиизоцианурат

0,023

900

32

Сотовый фенол — минеральное волокно со связующим на основе смолы

0,042

700

240

плита волокна цемента — измельченная древесина со связующим

цемента оксисульфида магнезии

0.082

1300

350

Вермикулит вспученный

0,068

1300

120

Войлок и мембрана — Войлок — HF-E3

0,190

1674

1121

Войлок и мембрана — Отделка — HF-A6

0.415

1088

1249

Минеральная вата / волокно — Батт — IN01

0,043

837

10

Минеральная вата / волокно — наполнитель — IN11

0,046

837

10

Минеральная вата / волокно — наполнитель — IN12

0.046

837

11

Целлюлозный наполнитель — IN13

0,039

1381

48

Изоляционная плита — HF-B2

0,043

1381

48

Изоляционная плита — HF-B5

0.043

837

32

Предварительно формованная минеральная плита — IN21

0,042

711

240

Пенополистирол — IN31

0,035

1213

29

Вспененный полиуретан — IN41

0.023

1590

24

Формальдегид мочевины — IN51

0,035

1255

11

Обшивка изоляционной плиты

— IN61

0,055

1297

288

Изоляционная плита для черепицы — IN63

0.058

1297

288

Изоляционная плита Обшивка основания гвоздя — IN64

0,064

1297

400

Предварительно формованная изоляция крыши — IN71

0,052

837

256

Металл

Сталь

50.000

480

7800

Медь

200,000

418

8900

Алюминий

160.000

896

2800

Облицовка из легкого металла

0,290

1000

1250

Стальной сайдинг — HF-A3

44.970

418

7690

Штукатурка

Штукатурка (плотная)

0.500

1000

1300

Гипс (легкий)

0,160

1000

600

Гипсокартон

0,160

840

950

Перлитный гипсокартон

0.180

837

800

Гипсовая штукатурка

0,420

837

1200

Перлитовая штукатурка

0,080

837

400

Штукатурка вермикулит

0.200

837

720

Гипсовая потолочная плитка

0,380

840

1120

Цементная штукатурка

0,720

800

1860

Перлитовая штукатурка

0,220

1300

720

Перлитовая штукатурка — песчано-заполнитель

0.810

800

1680

Цементная штукатурка — с песчаным заполнителем — CM03

0,721

837

1858

Гипсокартон / гипсовая плита — HF-E1

0,160

837

801

Гипсовый гипс легкий заполнитель — GP04

0.230

837

721

Гипсовая штукатурка — песчаный заполнитель — GP06

0,819

837

1682

Стяжки и штукатурки

Внешний рендеринг

0.500

1000

1300

Стяжка

0,410

840

1200

Гранолитная штукатурка / стяжка

0,870

837

2085

Штукатурка — HF-A1

0,721

837

2659

Пески, камни и почвы

Каменная крошка

0.960

1000

1800

Гравий

0,360

840

1840

Грунт на гравийной основе

0,520

184

2050

Песчаник

1,830

712

2200

Гранит (красный)

2.900

900

2650

Мрамор (белый)

2,770

802

2600

Культивируемая песчаная почва 12,5% D.W. Влажность

1,790

1190

1800

Обработанная песчаная почва 25,0% D.W. Влага

2,220

1480

2000

Культурно-глинистая почва 12,5% D.W. Влажность

1,180

1250

1800

Культурно-глинистая почва 25,0% D.W. Влажность

1,590

1550

2000

Культурная торфяная почва 133% D.W. Влага

0,290

3300

700

Культурная торфяная почва 366% D.W. Влажность

0,500

3650

1100

Сухой известняковый грунт

1,490

840

2180

Лондонская глина

1.410

1000

1900

Почва

1,729

837

1842

Камень — ST01

1,802

837

2243

Камень — HF-A3

1,435

1674

881

Терраццо — TZ01

1.802

837

2243

Плитка

Глиняная плитка

0.840

800

1900

Бетонная плитка

1.100

837

2100

Сланцевая плитка

2.000

753

2700

Пластиковая плитка

0,500

837

1950

Резиновая плитка

0.300

2000

1600

Пробковая плитка

0,080

1800

530

Асфальт / асбестовая плитка

0,550

837

1900

P.V.C. / Асбестовая плитка

0.850

837

2000

Плитка потолочная

0,056

1000

380

Гипсовая потолочная плитка

0,380

840

1120

Облицовка из легкого металла

0.290

1000

1250

Акустическая плитка — минеральное волокно

0,050

800

290

Акустическая плитка — AC01

0,057

1339

288

Акустическая плитка — HF-E5

0.061

2142

480

Плитка из полой глины — 1 ячейка — CT01

0,498

837

1121

Плитка из полой глины — 2 ячейки — CT03

0,571

837

1121

Плитка из полой глины — 3 ячейки — CT06

0.692

837

1121

Глиняная плитка — HF-C1

0,571

837

1121

Асфальтоукладчик — Глиняная плитка — CT11

1,802

837

1922

шифер — SL01

1.442

1464

1602

Древесина

Деревянные полы

0.140

1200

650

Фанера (легкая)

0,150

2500

560

Фанера (тяжелая)

0,150

1420

700

Деревянные блоки

0.140

1200

650

Плита из древесной шерсти

0,100

1000

500

Оргалит (средний)

0,080

2000

600

Оргалит (стандартный)

0.130

2000

900

Сосна (20% влажности)

0,140

2720

419

Пробковая доска

0,040

1888

160

ДСП

0,150

2093

800

Обшивка

0.140

2000

650

Дуб (Радиальный)

0,190

2390

700

Пробковая плитка

0,080

1800

530

Фанера — PW01

0,115

1213

545

Мягкое дерево — WD01

0.115

1381

513

Твердая древесина — WD11

0,158

1255

721

Дерево — HF-B7

0,121

837

593

Фанера — Дугласская пихта

0,120

1200

540

Гонт Древесина — WS01

0.115

1255

513

Thermal Mass K-16 Научные эксперименты и справочная информация


Определение

Тепловая масса — это концепция в проектировании зданий, которая описывает, как масса здания обеспечивает «инерцию» по отношению к колебаниям температуры, иногда известную как тепловой эффект маховика.

Введение

Например, когда наружная температура колеблется в течение дня, большая тепловая масса в изолированной части дома может служить для «сглаживания» дневных колебаний температуры, поскольку тепловая масса будет поглощать тепловую энергию, когда в окружающей среде более высокая температура. температура, чем масса, и возвращать тепловую энергию, когда окружающая среда более холодная, не достигая теплового равновесия.Это отличается от изолирующих свойств материала, которые снижают теплопроводность здания, позволяя нагревать или охлаждать его относительно отдельно от внешней среды, или даже просто дольше сохранять тепловую энергию людей.

С научной точки зрения, тепловая масса эквивалентна тепловой емкости или теплоемкости, способности тела накапливать тепловую энергию. Обычно обозначается символом Cth и измеряется в единицах Дж / ° C или Дж / К (что эквивалентно). Термическая масса также может использоваться для водоемов, машин или частей машин, живых существ или любых других конструкций или тел в инженерии или биологии.В этих контекстах вместо этого обычно используется термин «теплоемкость».

Теплоемкость (обычно обозначается заглавной буквой C, часто с индексами) — это измеримая физическая величина, которая характеризует количество тепла, необходимое для изменения температуры тела на заданную величину. В Международной системе единиц теплоемкость выражается в джоулях на кельвин.

Уравнение, связывающее тепловую энергию с тепловой массой:

Где Q — переданная тепловая энергия, Cth — тепловая масса тела, а ΔT — изменение температуры.

Например, если к медному редуктору с тепловой массой 38,46 Дж / ° C добавить 250 Дж тепловой энергии, его температура повысится на 6,50 ° C. Если тело состоит из однородного материала с достаточно известными физическими свойствами, термическая масса — это просто масса материала, умноженная на удельную теплоемкость этого материала. Для тел, сделанных из многих материалов, в расчетах может использоваться сумма теплоемкостей для их чистых компонентов, или в некоторых случаях (например, для всего животного) число может быть просто измерено для всего рассматриваемого тела, напрямую.

Любое твердое, жидкое или газообразное вещество, имеющее массу, будет иметь некоторую тепловую массу. Распространенное заблуждение состоит в том, что только бетон или земляной грунт имеют тепловую массу; даже воздух имеет тепловую массу (хотя и очень небольшую).

Тепловая масса в зданиях

Тепловая масса эффективна для повышения комфорта здания в любом месте, которое испытывает подобные дневные колебания температуры — как зимой, так и летом. При правильном использовании и в сочетании с пассивной солнечной системой тепловая масса может сыграть важную роль в значительном сокращении энергопотребления в активных системах отопления и охлаждения.

Идеальными материалами для термической массы являются те материалы, которые имеют:

  • высокая удельная теплоемкость,
  • высокая плотность

Правильное использование и применение тепловой массы зависит от преобладающего климата в районе.

Для умеренного и холодного умеренного климата термальная масса идеально размещается внутри здания и находится там, где она все еще может подвергаться воздействию зимнего солнечного света (через окна), но изолирована от потерь тепла.

Для жаркого, засушливого и пустынного климата примеры включают глинобитные дома или дома из утрамбованной земли.Его функция сильно зависит от заметных суточных колебаний температуры. Стена в основном препятствует передаче тепла снаружи внутрь в течение дня. Высокая объемная теплоемкость и толщина предотвращают попадание тепловой энергии на внутреннюю поверхность. Когда ночью температура падает, стены повторно излучают тепловую энергию обратно в ночное небо. В этом случае важно, чтобы такие стены были массивными, чтобы предотвратить передачу тепла внутрь помещения.

Для жаркого и влажного климата использование термальной массы является наиболее сложной задачей в этой среде, где ночные температуры остаются повышенными.Его используют в первую очередь в качестве временного радиатора. Тем не менее, он должен быть стратегически расположен, чтобы предотвратить перегрев. Он должен быть размещен в месте, которое не подвергается прямому воздействию солнечного излучения, а также обеспечивает адекватную вентиляцию в ночное время, чтобы уносить накопленную энергию без дальнейшего повышения внутренней температуры. Если он вообще будет использоваться, его следует использовать в разумных количествах и, опять же, не в больших толщинах.

Материалы, обычно используемые для тепловой массы

  • Вода имеет самую высокую объемную теплоемкость из всех обычно используемых материалов.Обычно его помещают в большой контейнер (-ы), например, в акриловые тубы, в местах с прямыми солнечными лучами. Его также можно использовать для пропитывания других материалов, таких как почва, для увеличения теплоемкости.
  • Глиняный кирпич, набивной кирпич или сырцовый кирпич
  • Земля, ил и дерн . Теплоемкость грязи зависит от ее плотности, влажности, формы частиц, температуры и состава. Ранние поселенцы Небраски строили дома с толстыми стенами из земли и дерна, потому что дерева, камня и других строительных материалов было мало.Чрезвычайная толщина стен обеспечивала некоторую изоляцию, но в основном служила тепловой массой, поглощая тепловую энергию в течение дня и высвобождая ее ночью. В наши дни люди иногда используют земные укрытия вокруг своих домов для того же эффекта. При укрытии из земли тепловая масса исходит не только от стен здания, но и от окружающей земли, которая находится в физическом контакте со зданием. Это обеспечивает довольно постоянную умеренную температуру, что снижает тепловой поток через прилегающую стену.
  • Утрамбованная земля обеспечивает отличную тепловую массу благодаря своей высокой плотности и высокой удельной теплоемкости грунта, использованного при строительстве.
  • Камни и камни природные
  • Бетон, глиняный кирпич и другие виды кладки . Теплопроводность бетона зависит от его состава и способа твердения. Бетоны с камнями более теплопроводны, чем бетоны с золой, перлитом, волокнами и другими изоляционными заполнителями.
  • Изоляционные бетонные формы обычно используются для обеспечения тепловой массы строительным конструкциям. Изоляционные бетонные формы или ICF обеспечивают удельную теплоемкость и массу бетона. Тепловая инерция конструкции очень высока, поскольку масса изолирована с обеих сторон.
  • Бревно используется в качестве строительного материала для создания внешних и, возможно, внутренних стен домов. Бревенчатые дома отличаются от некоторых других строительных материалов, перечисленных выше, потому что массивная древесина имеет как умеренную R-ценность (изоляцию), так и значительную тепловую массу.Напротив, вода, земля, камни и бетон имеют низкие значения R.

Если используется достаточная масса, это может создать сезонное преимущество. То есть может зимой греть, а летом прохладно. Иногда это называют «пассивным годовым накоплением тепла или ПАУ». Система PAHS успешно использовалась на высоте 7000 футов в Колорадо и в ряде домов в Монтане.

Интересующие темы

Накопитель тепловой энергии включает ряд технологий, позволяющих накапливать тепловую энергию в накопителях энергии для дальнейшего использования.Их можно использовать для балансировки энергопотребления в дневное и ночное время. Тепловой резервуар может поддерживаться при температуре выше (выше) или ниже (ниже) температуры окружающей среды. Основное применение сегодня — это производство льда, охлажденной воды или эвтектических растворов в ночное время, которые затем используются для охлаждения окружающей среды в течение дня.

A Стена для тромба — это стена, обращенная к солнцу, запатентованная в 1881 году ее изобретателем Эдвардом Морсом и популяризированная в 1964 году французским инженером Феликсом Тромбом и архитектором Жаком Мишелем.Это массивная стена, отделенная от окружающей среды остеклением и воздушным пространством, которое поглощает солнечную энергию и в ночное время избирательно отдает ее внутрь.

Для получения дополнительной информации: https://en.wikipedia.org/wiki/Thermal_mass

Источник: Википедия (Весь текст доступен в соответствии с условиями лицензии GNU Free Documentation License и Creative Commons Attribution-ShareAlike License.)

Высококачественный необработанный огнеупорный кирпич для промышленного применения с высокой теплоемкостью

Alibaba.com представляет широкий спектр полезных и производительных огнеупорных кирпичей с теплоемкостью для различных промышленных и коммерческих производственных процессов. Эти экологически чистые продукты по доступной цене — это фактически то, что остается после извлечения металла из руды, и они имеют вид стекла. Ведущие поставщики огнеупорного глиняного кирпича и оптовые торговцы на сайте предлагают эти продукты по доступным ценам и предлагают конкурентоспособные предложения, которые могут сэкономить деньги клиентов в долгосрочной перспективе.

Отличительные качества и разновидности этих огнеупорных кирпичей с теплоемкостью , представленных здесь, включают чистую природу их веществ и их влагонепроницаемость, что позволяет им служить дольше. Эти продукты, когда они включены в металлы или цемент, могут обеспечить большую прочность и более блестящий внешний вид, создавая полированный, аккуратный вид. Некоторые из услуг по обработке, в которых задействованы эти продукты, — это гибка, формование, штамповка, сварка, разматывание, резка и так далее. Продукты имеют более длительный срок хранения и устойчивы к любым внешним условиям, например, к атмосферным воздействиям.

Просмотрите множество вариантов этих высококачественных и производительных огнеупорных кирпичей теплоемкости на Alibaba.com и определите лучший с точки зрения требований. Эти продукты смешиваются со смолой, и к ним добавляются сложные окислители, которые образуются под высоким давлением. Характеристики этих продуктов включают низкую пористость, антикоррозионные свойства, высокую прочность и устойчивость к отслаиванию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *