Разное

Полистерол: Полистирол что это за материал, что делают, чем вреден, гранулы вспененного полистирола, экструдированный пенополистирол — Полинефтехим

Содержание

свойства материала, его характеристики и преимущества

Читая различную информацию о современных строительных материалах, часто приходится сталкиваться со словом полистирол. Применяя новые технологии в процессах производства, из него получают пенопласты. Все эти материалы находят широкое применение во многих сферах жизнедеятельности, поэтому стоит узнать более подробно, что представляет собой полистирол и как он используется, о его свойствах и характеристиках.

Что представляет собой полистирол

Полистирол относится к группе синтетических полимеров класса термопластов, продукт получают в промышленности полимеризацией стирола. Полистирол — твердое и бесцветное стеклоподобное вещество, которое пропускает до 90% лучей видимого спектра, его плотность 1,05г/м3 , имеет регулярную цепь строения.

Полимер обладает слабой полярностью, имея высокие диэлектрические свойства, они мало зависимы от частоты тока и температур. Он растворим в кетонах, ароматических углеводородах, альдегидах и эфирах, но не растворяется в спиртах, очень устойчив к кислотам, щелочам и воде. Полимер легко формируется и окрашивается, легко обрабатывается механическими способами, хорошо склеивается, он обладает высокой влагостойкостью и морозостойкостью, низким водопоглощением. В производстве его получают 3 способами:

  1. Эмульсионный
  2. Суспензионный
  3. Блочный.

Наиболее устаревший способ получения эмульсионный, поскольку он не нашел своего применения в производстве. Для того чтобы получить полистирол таким методом, необходимо иметь воду, стирол, инициатор полимеризации и эмульгатор, реакция которых происходит при температуре +85 +95оС. Весь процесс заканчивается, когда свободного стирола остается меньше чем 0,5%. Такой метод дает возможность получить полистирол с повышенной молекулярной массой.

Метод суспензионный производится по периодической схеме в реакторах с теплоотводящей рубашкой и мешалкой, применяя эмульсию, стабилизатор и инициатор полимеризации. В ходе процесса температура постепенно повышается до +130оС под давлением. Готовый продукт промывают и сушат. Этот метод также почти не используется, поскольку устарел, но его применяют для получения пенополистирола.

Наиболее эффективным является третий способ, он почти безотходный, поэтому нашел применение в производстве полистирола. Используются две схемы -полной и неполной конвенции для общего назначения полистирола. Полимеризация происходит в среде бензола постадийно, начиная с температуры +80оС постепенно доведя массу до +220оС, пока стирол не превратится в полистирол на 80-90%. Готовый продукт отличается стабильными параметрами и высокой чистотой.

Применение

Выпускается полимер в виде прозрачных гранул, которые имеют цилиндрическую форму. Они перерабатываются методом литься под давлением или экструзии, при температуре +190 +230оС. На основе полистирола базируется огромное количество пластиков, благодаря простоте полимера, его невысокой цене, большому ассортименту марок.

Из полистирола научились изготавливать массу самых необходимых предметов, которые нашли применение в повседневной жизни. Все изделия совершенно безвредны для здоровья людей, в быту они нас постоянно окружают — одноразовая посуда игрушки для детей, упаковка.

В строительстве полистирол нашел очень большое применение, на его основе производятся теплоизоляционные материалы — плиты, сэндвич-панели, несъемная опалубка и др. Также производится и отделочный декоративный материал для облицовки — потолочный багет и плитка декоративная.

В медицинской промышленности полимер также применим, из него производят некоторые части в системах переливания крови, одноразовые инструменты. Вспененный полистирол также актуален для подготовки и очистке сточных вод.

В пищевой промышленности используется упаковочный материал, который также производится из полистирола. Есть и ударопрочный вид полимера, он стал незаменим для бытовой техники, электроники.

Физические свойства полистирола

  1. Плотность — 1050-1080кг/м3
  2. Насыпная плотность гранул — 550-560кг/м3
  3. Усадка линейная в форме — 0,4-0,8%
  4. Нижний предел рабочей температуры — ( -40оС), верхний предел — (+75оС)
  5. Электрическая прочность с частотой 50Гц — 20-23кВ/мм
  6. Удельное электрическое сопротивление поверхностное — 1016Ом, объемное, под напряжением 1 мин — 1017Ом-см, под напряжением 15 мин — 1015Ом-см.
  7. Коэффициент линейного расширения термического — 6х10-5, 7х10-5градус-1
  8. Теплопроводность — 0,093-0,140Вт/м*К
  9. Теплоемкость — 34х103Дж/кг*К
  10. Диэлектрическая проницаемость — 2,49-2, 6
  11. Тангенс угла при диэлектрических потерях с частотой 1МГц составляет — 3-4Х10-4.

Свойства полимера

Полистирол — термопластическая пластмасса в форме плит, может иметь гладкую поверхность или со штампованным рисунком. Полимер белого цвета можно назвать хорошей альтернативой пластику ПВХ, а прозрачный вариант — оргстеклу. Он стал популярным благодаря таким свойствам, как гибкость и легкость в обработке, он обладает также высокой ударопрочностью. Он отлично обрабатывается и формуется, препятствует потере тепла, но главным его достоинством является низкая стоимость.

Его можно также назвать идеальным заменителем стекла, поскольку он прозрачный и легкий в обработке. Он находит применение во внутренней и наружной частях помещений, благодаря своим физическим и химическим свойствам. Прозрачный полимер часто используется для остекления зданий, отлично пропускает свет, но боится прямых солнечных лучей. Со временем УФ приводит к разрушению материала, он желтеет, снижаются его характеристики прочности.

Полистирол стал уже давно применяться, как основа для производства пенопластов и других материалов на их основе, путем нагревания смеси материала с преобразователями. В процессе производства получается вспученный полистирол, а после остывания материал превращается во вспенено застывшую массу жесткой структуры с плотными ячейками, заполненными воздухом. 98% готового материала составляет воздух, а всего 2% приходится на сам полимер.

Такое качество, как низкая теплопроводность сделала вспененный полимер незаменимым материалом в строительных работах. Его стали широко использовать для утепления стен, кровли, пола и потолков в зданиях разного типа. С утеплителем просто работать, его можно порезать обычным острым ножом, легко монтировать, поскольку он имеет незначительный вес. Большинство потребителей оценили материал по достоинству, их привлекает его устойчивость к процессам гниения и образования грибков, стойкость к агрессивной среде, воздействию микроорганизмов.

Но у вспененного полистирола есть и минусы, о которых также нужно сказать — экологическая небезопасность, недолговечность и пожароопасность.

Заключение

Сам полистирол не наносит вреда окружающей среды, но некоторые виды материалов на его основе могут быть опасны для здоровья, он является горючим материалом. В зависимости от свойств и назначения полистирола, установлены марки для общего назначения, поэтому потребитель, пользуясь этими обозначениями, может узнать о характеристиках и применении определенной марки полимера.

Оцените статью: Поделитесь с друзьями!

виды полистирола, как применяется полистирол

Из различной пластмассы на сегодняшний день изготавливают большое количество игрушек, строительных материалов и пр. Самым популярным видом пластика считается полистирол. Он обладает высокими техническими характеристиками. Поэтому такой материал широко используется в быту и промышленной сфере. 

Содержание:

  1. Что такое полистирол
  2. Как применяется полистирол
  3. Виды полистирола
  4. Свойства полимера
  5. Физические свойства полистирола
  6. Отличие от полистирола от пенопласта

Что такое полистирол

Полистирол представляет собой твердый бесцветный материал. Он относится к группе синтетических полимеров. Изготавливают полистирол из стирола или фентилэтилена путем полимеризации. Одним из конечных продуктов переработки природного газа и нефти является полистирол. 

Как применяется полистирол

Изготавливается полимер в виде прозрачных гранул. Они обладают цилиндрической формой. Большое количество пластика основывается на основе полистирола. Так как полимер имеет простое строение, небольшую стоимость и большой выбор.

Из полистирола изготавливают различные материалы, предметы, которые необходимы в повседневной жизни. Например, игрушки, одноразовая посуда, упаковки и т.д. Все предметы не несут вреда для нашего здоровья. 

Для изготовления теплоизоляционных материалов используют полистирол. Поэтому он широко применяется в строительстве. На его основе изготавливают плиты, несъемные опалуби, сэндвич-панели и многое другое. Еще изготавливают из полистирола декоративную плитку и потолочные карнизы. 

Помимо строительства полистирол используют в медицинских нуждах. Из него изготавливают одноразовые инструменты и части системы переливания крови.

Для подготовки и очистки сточных вод применяют вспененный полистирол. 

В пищевой промышленности тоже используется полистирол. Из него изготавливают упаковочные материалы. 

А для производства электроники и бытовой техники используют ударопрочный полистирол.

Виды полистирола

Полистирол можно разделить по технологии производства. Рассмотрим самые популярные виды данного материала:

  • Ударопрочный полистирол. Он представляет собой непрозрачный материал, который получается путем сополимеризации с бутадиен-каучуком.
  • Вспененный полистирол производится путем нагрева с пенообразователем. Затем экструдируется в листовой или рулонный материал. Он используется в качестве утепляющего слоя.
  • Полистирол общего назначения. Такой материал имеет низкую упругость. А также изготавливается без красителей и выглядит практически прозрачным. 
  • Светорассеивающий полистирол. Такой материал применяется для рекламных конструкций. По виду напоминает акриловое стекло.

Свойства полимера

Полистирол представляет собой термопластическую пластмассу, которая изготавливается в виде плит. Она может быть с гладкой поверхностью или иметь штампованные рисунки. Полимер бывает прозрачный и белый. Прозрачный полимер может стать хорошей заменой оргстеклу, а белый – пластику ПВХ. Такой материал очень популярен благодаря своей высокой ударопрочности, простоте в обработке и гибкостью. 

Одним из достоинств такого материала является низкая стоимость. Полистирол легко формуется, обрабатывается и препятствует потери тепла. Он с легкостью может заменить стекло, так как прост в обработке и имеет прозрачный цвет.

Благодаря высоким химическим и физическим свойствам такой материал применяется для наружных и внутренних частей помещений. Прозрачный полимер можно использовать для остекления зданий, так как он хорошо пропускает свет. Но стоит учитывать, что такой материал боится воздействия прямых солнечных лучей. Так как через какое-то время полистирол начинает желтеть, снижаются его характеристики и затем он разрушается. Такой материал давно используется для изготовления пенопласта и других материалов. Происходит это при помощи нагревания материала и преобразователя. При изготовлении получается вспученный полистирол. А после того как материал остывает он превращается во вспененную застывшую массу.

Она обладает жесткой структурой с плотными ячейками, которые заполняются на 98% воздухом. В получившемся материале содержится всего 2% полимера. 

Благодаря низкой теплопроводности материала он отлично подходит для строительства. Полистирол широко применяется для утепления пола, кровли, потолков и стен. Такой утеплитель легко устанавливать и резать обычным строительным ножом. Вес такого материала небольшой. Те, кто уже покупал полистирол ,отзываются только о его положительных сторонах. Они отмечают, что полистирол противостоит гниению, грибку, проявляет стойкость к агрессивной среде и воздействию микроорганизмов. Но, как и у любого материала можно выделить некоторые недостатки: 

  1. Пожароопасность;
  2. Экологически небезопасный материал;
  3. Небольшой срок службы.

Физические свойства полистирола

Рассмотрим физические свойства полистирола:

  • Теплоемкость составляет 35х103Дж/кг*К;
  • Плотность материала составляет от 1050 до 1080 кг/м3;
  • Усадка от 0,4 до 0,8%;Насыпная плотность гранул составляет от 550 до 560 кг/м3;
  • Нижнее значение рабочей температуры равняется -40оС, а верхнее – 75оС;
  • Диэлектрическая проницаемость равняется от 2,49 до 2,6;
  • Электрическая прочность составляет частоту 50 Гц;
  • Электрическое сопротивление равняется 1016 Ом.

Отличие полистирола от пенопласта

Пенопласт является разновидностью вспененного полистирола. Гранулы материала обрабатывают паром, поэтому промежутки между молекулами увеличиваются. При распухании гранул полистирола они склеиваются между собой, и образуется пенопласт. 

При разогреве гранулированного полистирола, который имеет пенообразующий наполнитель, полученную пену выдавливают в форму и таким образом получается экструдированный пенополистирол. Пенопласт и пенополистирол ни чем не отличается кроме техники изготовления.

Читайте также:

виды полистирола, как применяется полистирол

Из различной пластмассы на сегодняшний день изготавливают большое количество игрушек, строительных материалов и пр. Самым популярным видом пластика считается полистирол. Он обладает высокими техническими характеристиками. Поэтому такой материал широко используется в быту и промышленной сфере. 

Содержание:

  1. Что такое полистирол
  2. Как применяется полистирол
  3. Виды полистирола
  4. Свойства полимера
  5. Физические свойства полистирола
  6. Отличие от полистирола от пенопласта

Что такое полистирол

Полистирол представляет собой твердый бесцветный материал.

Он относится к группе синтетических полимеров. Изготавливают полистирол из стирола или фентилэтилена путем полимеризации. Одним из конечных продуктов переработки природного газа и нефти является полистирол. 

Как применяется полистирол

Изготавливается полимер в виде прозрачных гранул. Они обладают цилиндрической формой. Большое количество пластика основывается на основе полистирола. Так как полимер имеет простое строение, небольшую стоимость и большой выбор. Из полистирола изготавливают различные материалы, предметы, которые необходимы в повседневной жизни. Например, игрушки, одноразовая посуда, упаковки и т.д. Все предметы не несут вреда для нашего здоровья. 

Для изготовления теплоизоляционных материалов используют полистирол. Поэтому он широко применяется в строительстве. На его основе изготавливают плиты, несъемные опалуби, сэндвич-панели и многое другое. Еще изготавливают из полистирола декоративную плитку и потолочные карнизы. 

Помимо строительства полистирол используют в медицинских нуждах. Из него изготавливают одноразовые инструменты и части системы переливания крови.

Для подготовки и очистки сточных вод применяют вспененный полистирол. 

В пищевой промышленности тоже используется полистирол. Из него изготавливают упаковочные материалы. 

А для производства электроники и бытовой техники используют ударопрочный полистирол.

Виды полистирола

Полистирол можно разделить по технологии производства. Рассмотрим самые популярные виды данного материала:

  • Ударопрочный полистирол. Он представляет собой непрозрачный материал, который получается путем сополимеризации с бутадиен-каучуком.
  • Вспененный полистирол производится путем нагрева с пенообразователем. Затем экструдируется в листовой или рулонный материал. Он используется в качестве утепляющего слоя.
  • Полистирол общего назначения. Такой материал имеет низкую упругость. А также изготавливается без красителей и выглядит практически прозрачным. 
  • Светорассеивающий полистирол.
    Такой материал применяется для рекламных конструкций. По виду напоминает акриловое стекло.

Свойства полимера

Полистирол представляет собой термопластическую пластмассу, которая изготавливается в виде плит. Она может быть с гладкой поверхностью или иметь штампованные рисунки. Полимер бывает прозрачный и белый. Прозрачный полимер может стать хорошей заменой оргстеклу, а белый – пластику ПВХ. Такой материал очень популярен благодаря своей высокой ударопрочности, простоте в обработке и гибкостью. 

Одним из достоинств такого материала является низкая стоимость. Полистирол легко формуется, обрабатывается и препятствует потери тепла. Он с легкостью может заменить стекло, так как прост в обработке и имеет прозрачный цвет.

Благодаря высоким химическим и физическим свойствам такой материал применяется для наружных и внутренних частей помещений. Прозрачный полимер можно использовать для остекления зданий, так как он хорошо пропускает свет. Но стоит учитывать, что такой материал боится воздействия прямых солнечных лучей. Так как через какое-то время полистирол начинает желтеть, снижаются его характеристики и затем он разрушается. Такой материал давно используется для изготовления пенопласта и других материалов. Происходит это при помощи нагревания материала и преобразователя. При изготовлении получается вспученный полистирол. А после того как материал остывает он превращается во вспененную застывшую массу. Она обладает жесткой структурой с плотными ячейками, которые заполняются на 98% воздухом. В получившемся материале содержится всего 2% полимера. 

Благодаря низкой теплопроводности материала он отлично подходит для строительства. Полистирол широко применяется для утепления пола, кровли, потолков и стен. Такой утеплитель легко устанавливать и резать обычным строительным ножом. Вес такого материала небольшой. Те, кто уже покупал полистирол ,отзываются только о его положительных сторонах. Они отмечают, что полистирол противостоит гниению, грибку, проявляет стойкость к агрессивной среде и воздействию микроорганизмов. Но, как и у любого материала можно выделить некоторые недостатки: 

  1. Пожароопасность;
  2. Экологически небезопасный материал;
  3. Небольшой срок службы.

Физические свойства полистирола

Рассмотрим физические свойства полистирола:

  • Теплоемкость составляет 35х103Дж/кг*К;
  • Плотность материала составляет от 1050 до 1080 кг/м3;
  • Усадка от 0,4 до 0,8%;Насыпная плотность гранул составляет от 550 до 560 кг/м3;
  • Нижнее значение рабочей температуры равняется -40оС, а верхнее – 75оС;
  • Диэлектрическая проницаемость равняется от 2,49 до 2,6;
  • Электрическая прочность составляет частоту 50 Гц;
  • Электрическое сопротивление равняется 1016 Ом.

Отличие полистирола от пенопласта

Пенопласт является разновидностью вспененного полистирола. Гранулы материала обрабатывают паром, поэтому промежутки между молекулами увеличиваются. При распухании гранул полистирола они склеиваются между собой, и образуется пенопласт.  

При разогреве гранулированного полистирола, который имеет пенообразующий наполнитель, полученную пену выдавливают в форму и таким образом получается экструдированный пенополистирол. Пенопласт и пенополистирол ни чем не отличается кроме техники изготовления.

Читайте также:

виды полистирола, как применяется полистирол

Из различной пластмассы на сегодняшний день изготавливают большое количество игрушек, строительных материалов и пр. Самым популярным видом пластика считается полистирол. Он обладает высокими техническими характеристиками. Поэтому такой материал широко используется в быту и промышленной сфере. 

Содержание:

  1. Что такое полистирол
  2. Как применяется полистирол
  3. Виды полистирола
  4. Свойства полимера
  5. Физические свойства полистирола
  6. Отличие от полистирола от пенопласта

Что такое полистирол

Полистирол представляет собой твердый бесцветный материал. Он относится к группе синтетических полимеров. Изготавливают полистирол из стирола или фентилэтилена путем полимеризации. Одним из конечных продуктов переработки природного газа и нефти является полистирол. 

Как применяется полистирол

Изготавливается полимер в виде прозрачных гранул. Они обладают цилиндрической формой. Большое количество пластика основывается на основе полистирола. Так как полимер имеет простое строение, небольшую стоимость и большой выбор. Из полистирола изготавливают различные материалы, предметы, которые необходимы в повседневной жизни. Например, игрушки, одноразовая посуда, упаковки и т.д. Все предметы не несут вреда для нашего здоровья. 

Для изготовления теплоизоляционных материалов используют полистирол. Поэтому он широко применяется в строительстве. На его основе изготавливают плиты, несъемные опалуби, сэндвич-панели и многое другое. Еще изготавливают из полистирола декоративную плитку и потолочные карнизы. 

Помимо строительства полистирол используют в медицинских нуждах. Из него изготавливают одноразовые инструменты и части системы переливания крови.

Для подготовки и очистки сточных вод применяют вспененный полистирол. 

В пищевой промышленности тоже используется полистирол. Из него изготавливают упаковочные материалы. 

А для производства электроники и бытовой техники используют ударопрочный полистирол.

Виды полистирола

Полистирол можно разделить по технологии производства. Рассмотрим самые популярные виды данного материала:

  • Ударопрочный полистирол. Он представляет собой непрозрачный материал, который получается путем сополимеризации с бутадиен-каучуком.
  • Вспененный полистирол производится путем нагрева с пенообразователем. Затем экструдируется в листовой или рулонный материал. Он используется в качестве утепляющего слоя.
  • Полистирол общего назначения. Такой материал имеет низкую упругость. А также изготавливается без красителей и выглядит практически прозрачным. 
  • Светорассеивающий полистирол. Такой материал применяется для рекламных конструкций. По виду напоминает акриловое стекло.

Свойства полимера

Полистирол представляет собой термопластическую пластмассу, которая изготавливается в виде плит. Она может быть с гладкой поверхностью или иметь штампованные рисунки. Полимер бывает прозрачный и белый. Прозрачный полимер может стать хорошей заменой оргстеклу, а белый – пластику ПВХ. Такой материал очень популярен благодаря своей высокой ударопрочности, простоте в обработке и гибкостью. 

Одним из достоинств такого материала является низкая стоимость. Полистирол легко формуется, обрабатывается и препятствует потери тепла. Он с легкостью может заменить стекло, так как прост в обработке и имеет прозрачный цвет.

Благодаря высоким химическим и физическим свойствам такой материал применяется для наружных и внутренних частей помещений. Прозрачный полимер можно использовать для остекления зданий, так как он хорошо пропускает свет. Но стоит учитывать, что такой материал боится воздействия прямых солнечных лучей. Так как через какое-то время полистирол начинает желтеть, снижаются его характеристики и затем он разрушается. Такой материал давно используется для изготовления пенопласта и других материалов. Происходит это при помощи нагревания материала и преобразователя. При изготовлении получается вспученный полистирол. А после того как материал остывает он превращается во вспененную застывшую массу. Она обладает жесткой структурой с плотными ячейками, которые заполняются на 98% воздухом. В получившемся материале содержится всего 2% полимера. 

Благодаря низкой теплопроводности материала он отлично подходит для строительства. Полистирол широко применяется для утепления пола, кровли, потолков и стен. Такой утеплитель легко устанавливать и резать обычным строительным ножом. Вес такого материала небольшой. Те, кто уже покупал полистирол ,отзываются только о его положительных сторонах. Они отмечают, что полистирол противостоит гниению, грибку, проявляет стойкость к агрессивной среде и воздействию микроорганизмов. Но, как и у любого материала можно выделить некоторые недостатки: 

  1. Пожароопасность;
  2. Экологически небезопасный материал;
  3. Небольшой срок службы.

Физические свойства полистирола

Рассмотрим физические свойства полистирола:

  • Теплоемкость составляет 35х103Дж/кг*К;
  • Плотность материала составляет от 1050 до 1080 кг/м3;
  • Усадка от 0,4 до 0,8%;Насыпная плотность гранул составляет от 550 до 560 кг/м3;
  • Нижнее значение рабочей температуры равняется -40оС, а верхнее – 75оС;
  • Диэлектрическая проницаемость равняется от 2,49 до 2,6;
  • Электрическая прочность составляет частоту 50 Гц;
  • Электрическое сопротивление равняется 1016 Ом.

Отличие полистирола от пенопласта

Пенопласт является разновидностью вспененного полистирола. Гранулы материала обрабатывают паром, поэтому промежутки между молекулами увеличиваются. При распухании гранул полистирола они склеиваются между собой, и образуется пенопласт.  

При разогреве гранулированного полистирола, который имеет пенообразующий наполнитель, полученную пену выдавливают в форму и таким образом получается экструдированный пенополистирол. Пенопласт и пенополистирол ни чем не отличается кроме техники изготовления.

Читайте также:

виды полистирола, как применяется полистирол

Из различной пластмассы на сегодняшний день изготавливают большое количество игрушек, строительных материалов и пр. Самым популярным видом пластика считается полистирол. Он обладает высокими техническими характеристиками. Поэтому такой материал широко используется в быту и промышленной сфере. 

Содержание:

  1. Что такое полистирол
  2. Как применяется полистирол
  3. Виды полистирола
  4. Свойства полимера
  5. Физические свойства полистирола
  6. Отличие от полистирола от пенопласта

Что такое полистирол

Полистирол представляет собой твердый бесцветный материал. Он относится к группе синтетических полимеров. Изготавливают полистирол из стирола или фентилэтилена путем полимеризации. Одним из конечных продуктов переработки природного газа и нефти является полистирол. 

Как применяется полистирол

Изготавливается полимер в виде прозрачных гранул. Они обладают цилиндрической формой. Большое количество пластика основывается на основе полистирола. Так как полимер имеет простое строение, небольшую стоимость и большой выбор. Из полистирола изготавливают различные материалы, предметы, которые необходимы в повседневной жизни. Например, игрушки, одноразовая посуда, упаковки и т.д. Все предметы не несут вреда для нашего здоровья. 

Для изготовления теплоизоляционных материалов используют полистирол. Поэтому он широко применяется в строительстве. На его основе изготавливают плиты, несъемные опалуби, сэндвич-панели и многое другое. Еще изготавливают из полистирола декоративную плитку и потолочные карнизы. 

Помимо строительства полистирол используют в медицинских нуждах. Из него изготавливают одноразовые инструменты и части системы переливания крови.

Для подготовки и очистки сточных вод применяют вспененный полистирол. 

В пищевой промышленности тоже используется полистирол. Из него изготавливают упаковочные материалы. 

А для производства электроники и бытовой техники используют ударопрочный полистирол.

Виды полистирола

Полистирол можно разделить по технологии производства. Рассмотрим самые популярные виды данного материала:

  • Ударопрочный полистирол. Он представляет собой непрозрачный материал, который получается путем сополимеризации с бутадиен-каучуком.
  • Вспененный полистирол производится путем нагрева с пенообразователем. Затем экструдируется в листовой или рулонный материал. Он используется в качестве утепляющего слоя.
  • Полистирол общего назначения. Такой материал имеет низкую упругость. А также изготавливается без красителей и выглядит практически прозрачным. 
  • Светорассеивающий полистирол. Такой материал применяется для рекламных конструкций. По виду напоминает акриловое стекло.

Свойства полимера

Полистирол представляет собой термопластическую пластмассу, которая изготавливается в виде плит. Она может быть с гладкой поверхностью или иметь штампованные рисунки. Полимер бывает прозрачный и белый. Прозрачный полимер может стать хорошей заменой оргстеклу, а белый – пластику ПВХ. Такой материал очень популярен благодаря своей высокой ударопрочности, простоте в обработке и гибкостью. 

Одним из достоинств такого материала является низкая стоимость. Полистирол легко формуется, обрабатывается и препятствует потери тепла. Он с легкостью может заменить стекло, так как прост в обработке и имеет прозрачный цвет.

Благодаря высоким химическим и физическим свойствам такой материал применяется для наружных и внутренних частей помещений. Прозрачный полимер можно использовать для остекления зданий, так как он хорошо пропускает свет. Но стоит учитывать, что такой материал боится воздействия прямых солнечных лучей. Так как через какое-то время полистирол начинает желтеть, снижаются его характеристики и затем он разрушается. Такой материал давно используется для изготовления пенопласта и других материалов. Происходит это при помощи нагревания материала и преобразователя. При изготовлении получается вспученный полистирол. А после того как материал остывает он превращается во вспененную застывшую массу. Она обладает жесткой структурой с плотными ячейками, которые заполняются на 98% воздухом. В получившемся материале содержится всего 2% полимера. 

Благодаря низкой теплопроводности материала он отлично подходит для строительства. Полистирол широко применяется для утепления пола, кровли, потолков и стен. Такой утеплитель легко устанавливать и резать обычным строительным ножом. Вес такого материала небольшой. Те, кто уже покупал полистирол ,отзываются только о его положительных сторонах. Они отмечают, что полистирол противостоит гниению, грибку, проявляет стойкость к агрессивной среде и воздействию микроорганизмов. Но, как и у любого материала можно выделить некоторые недостатки: 

  1. Пожароопасность;
  2. Экологически небезопасный материал;
  3. Небольшой срок службы.

Физические свойства полистирола

Рассмотрим физические свойства полистирола:

  • Теплоемкость составляет 35х103Дж/кг*К;
  • Плотность материала составляет от 1050 до 1080 кг/м3;
  • Усадка от 0,4 до 0,8%;Насыпная плотность гранул составляет от 550 до 560 кг/м3;
  • Нижнее значение рабочей температуры равняется -40оС, а верхнее – 75оС;
  • Диэлектрическая проницаемость равняется от 2,49 до 2,6;
  • Электрическая прочность составляет частоту 50 Гц;
  • Электрическое сопротивление равняется 1016 Ом.

Отличие полистирола от пенопласта

Пенопласт является разновидностью вспененного полистирола. Гранулы материала обрабатывают паром, поэтому промежутки между молекулами увеличиваются. При распухании гранул полистирола они склеиваются между собой, и образуется пенопласт. 

При разогреве гранулированного полистирола, который имеет пенообразующий наполнитель, полученную пену выдавливают в форму и таким образом получается экструдированный пенополистирол. Пенопласт и пенополистирол ни чем не отличается кроме техники изготовления.

Читайте также:

Полистирол: виды, свойства и характеристики

Полистирол – это термопластичный полимер с линейной структурой, являющийся продуктом полимеризации стирола. Физические и химические характеристики, а также эксплуатационные свойства зависят от способа получения, молекулярной массы, полидисперсности и других факторов. Его перерабатывают литьем под давлением и экструзией при высоких температурах.

Сфера его применения достаточно широка. Полимер используют в гражданской и военной промышленности, машиностроении, электротехнике, строительстве, приборостроении, медицине, пищевой промышленности, для внешней и внутренней декоративной отделки помещений, а также для изготовления различных бытовых предметов. Его достоинства заключаются в следующем:

  • легко поддается обработке;
  • устойчив к воздействию агрессивных химических веществ;
  • является хорошим диэлектриком;
  • экологически безопасен;
  • не имеет запаха.

Среди существенных недостатков можно выделить горючесть, плохую износостойкость, повышенную хрупкость, низкую рабочую температуру.

Для повышения физических характеристик и улучшения эксплуатационных свойств его смешивают с другими полимерами.

Содержание:

  1. Методы получения
  2. Виды полистирола
  3. Полистирол общего назначения
  4. Ударопрочный полистирол
  5. Экструдированный полистирол
  6. Сфера применения

Методы получения

Существует несколько методов производства полистирола. Некоторые из них получили широкое распространение и используются по сей день, другие применяют лишь в редких случаях. Выделяют три основных способа его создания: эмульсионный, суспензионный, блочный или получаемый в массе.

Эмульсионный способ в силу ряда причин не получил такого распространения, как два другие. Он основан на полимеризации стирола в щелочном растворе при 85 – 95 градусов по Цельсию. Для получения готового продукта используются стирол, вода, эмульгатор и инициатор полимеризации. Данный метод позволяет получать полимер с большой молекулярной массой.

Суспензионный способ на сегодняшний день уже устарел, но до сих пор его используют в производстве пенополистирола, также его применяют для получения сополимеров. Полимеризация стирола происходит при постепенном повышении температурных показателей под давлением. В ходе производственного процесса получают суспензию, из которой путем центрифугирования уже получают готовое продукт. Далее он подвергается промывке и сушке.

Блочный или получаемый в массе метод является самым современным и применяется на большинстве химических заводов. Его преимущества – получение на выходе продукции высокого качества, безотходность, высокая эффективность. На промышленных предприятиях используют две схемы: полной и неполной конверсии. Процесс происходит в несколько этапов с постепенным повышением температуры.

Виды полистирола

Благодаря смешению полистирола с другими полимерами и сополимерами стирола, удается получить материалы, обладающие превосходной теплостойкостью и ударной прочностью. Наибольшее промышленное значение имеют блок-сополимеры и привитые сополимеры, а также статистические сополимеры. Выделяют три основных вида промышленного полистирола: общего назначения, ударопрочный и экструдированный.

Полистирол общего назначения

Полистирол общего назначения – прозрачный материал, отличающийся жесткостью и хрупкостью. Имеет следующие маркировки: PS, PS-GP, GPPS, Сrystal PS и XPS. Производится согласно ГОСТа 20282-86 с помощью суспензионного и блочного метода, предназначен для изготовления изделий различными методами термоформования.

Технические характеристики:

  • максимальная температура эксплуатации – 75 – 105 Сº;
  • стеклование – 80 – 113 Сº;
  • предел хрупкости – 60 – 70 Сº;
  • плотность – 1,04 – 1,06 г/см3;
  • модуль упругости при растяжении – 2 850 – 2 930 МПа;
  • прочность на изгиб – 80 – 104 МПа;
  • предельная прочность на разрыв – 3%.

Получаемый материал устойчив к воде, кислотам и щелочам, отличается низкой устойчивостью к различным растворителям и техническим маслам. Кроме того, имеет следующие физико-химические свойства:

  • прозрачность;
  • твердость;
  • низкое влагопоглощение;
  • отличные диэлектрические показатели;
  • радиационную устойчивость;
  • низкую устойчивость к УФ-излучению.

Он в основном используется для производства бытовых изделий, тары и пищевой упаковки, а также детских игрушек. Применяется в светотехнике, при изготовлении щитов наружной рекламы, для декоративных и отделочных строительных работ.

Ударопрочный полистирол

Ударопрочный полистирол является продуктом сополимеризации стирола с бутадиеновым и бутадиен-стирольным каучуком. Его свойства во многом зависят от объема каучуковой фазы. Методы переработки – литье под давлением при высоких температурах и экструзия листа с вакуум- или пневмоформованием.

Соотношение стирола и каучука определяют эксплуатационные характеристики пластика. Выделяют следующие виды ударопрочного полистирола:

  • сверхударопрочный – содержание каучука 10 – 15%;
  • высокой ударной прочности – доля каучука 7,5 – 9%;
  • средней ударной прочности – каучук составляет 3,5 – 4,5%.

Технические характеристики:

  • прочность при растяжении – не менее 21 МПа;
  • модуль упругости при растяжении – не менее 1 800 МПа;
  • относительное удлинение – не менее 45%;
  • прочность при изгибе – не менее 35 МПа;
  • модуль эластичности – не менее 50 МПа;
  • глянец под углом 60º – не менее 100.

Ударопрочный пластик имеет схожие значения с полистиролом общего назначения по теплостойкости, твердости, диэлектрическим свойствам. Его используют в приборостроении, изготовлении мебели, производстве бытовой техники, осветительных приборов, посуды и игрушек. Широта применения объясняется не только его высокими эксплуатационными свойствами, но и низкой ценой. В настоящее время он является одним из самых дешевых пластиков.

Экструдированный полистирол

Экструдированный полистирол изготавливается из полимеризированного стирола методом экструзии. Несмотря на то, что он был изобретен еще в первой половине XX века, ему до сих пор нет аналогов, которые бы превосходили его по эксплуатационным свойствам и доступности. Он является универсальным утеплителем. Его используют для теплоизоляции в промышленном и гражданском строительстве, а также при производстве холодильного оборудования, звукоизоляции спортивных и ледовых арен.

Технические характеристики:

  • плотность – 1,05 г/см3;
  • относительное удлинение – 1,3 %;
  • предел прочности при растяжении – 45 – 55 МПа;
  • прозрачность – 90 %;
  • предел прочности при изгибе – 75 – 80 МПа;
  • модуль упругости – 3 200 – 3 500 МПа;
  • ударная вязкость – 14 кДж/м2;
  • коэффициент линейного расширения – 8×10-5 1/0С°.

Этот универсальный синтетический материал обладает уникальными эксплуатационными свойствами:

  • низкой теплопроводностью;
  • устойчивостью с агрессивным химическим веществам;
  • высокой прочностью;
  • морозостойкостью;
  • влагоустойчивостью;
  • невосприимчивостью к грибку;
  • экологичностью;
  • долговечностью.

Материал хорошо поддается обработке, прост в монтаже, что немаловажно при любых строительных работах. Он абсолютно нетоксичен, что позволяет применять как его для наружной, так и для внутренней отделки жилых помещений.

Недостатком является его высокая горючесть, ему присвоен класс Г4, однако он имеет способность к самозатуханию.

Отличается доступной ценой, которая варьируется в зависимости от производителя, размеров и плотности плит.

Сфера применения

Бытовая сфера. Полимер не имеет запаха и может контактировать с пищей без вреда для здоровья человека. Именно благодаря высокой экологичности и безопасности, он используется для изготовления большого количества бытовых мелочей: одноразовая посуда, упаковка и тара, детские игрушки, предметы интерьера, канцтовары.

Строительство. Материал широко применяется в строительстве для теплоизоляции, при производстве сэндвич панелей, как декоративный и отделочный материал. Из него изготавливают потолочную плитку, звукопоглощающие элементы, клеевую основу и многое другое. Кроме того, его часто используют в дорожном строительстве, возведении промышленных зданий и сооружений.

Медицина. Пластик применяется при изготовлении различного медицинского инвентаря и инструментария. В частности, в производстве систем переливания крови, одноразовых инструментов, расходных материалов, чашек Петри.

Электротехника и бытовая электроника. Хорошие диэлектрические свойства полистирола нашли применение в производстве антенн, кабелей, тонких ориентированных конденсаторных пленок. Он также применяется при изготовлении корпусов бытовой техники, холодильных установок.

Промышленность. В гражданской промышленности его используют для возведения различных конструкций, агрегатов, турбин, зданий и сооружений. Его также применяют и в военной промышленности для производства напалма и некоторых взрывчатых веществ.

Полистирол является высокотехнологичным и недорогим материалом с превосходными теплоизоляционными и звукоизоляционными свойствами. Экологическая безопасность и доступность обуславливают его широкое применение в самых разных сферах человеческой жизни. В настоящий момент полимер не имеет аналогов, которые смогли бы его заменить. Близкие к полистиролу материалы либо имеют худшие эксплуатационные свойства, либо отличаются более высокой ценой. По всей видимости, он еще долгие годы будет оставаться востребованным как на российском, так и на мировом рынке.

Похожие записи:

Полистирол (06, PS, ПС) – РазДельный Сбор — сайт справочник

Полистирол — продукт полимеризации стирола, термопластичный полимер линейной структуры. Полистирол является одним из конечных продуктов переработки углеродного сырья — нефти и природного газа.

Особенности полистрола:

Из-за разнообразия тары из полипропилена и её схожести с тарой из полистирола заготовители сырья неохотно берут эти два вида пластика на переработку. К тому же сначала надо собрать достаточно большой объём пластика (несколько тонн), а после этого отправить на завод по переработке. К тому же, вспененный полистирол (часто называемый пенопластом) очень мало весит и занимает большой объём, плохо прессуется, поэтому в масштабах небольших пунктов приёма очень не рентабелен, хотя и перерабатывается.

!!! Важно отметить, что вспененный (поддоны из-под фруктов, упаковочный пенопласт) и твёрдый (тара, крышки) полистирол хотя и имеют одинаковую маркировку – «06», перерабатываются разными методами, поэтому собираются отдельно. 

Миф: в России не перерабатывают полипропилен и полистирол (05 и 06)

Существует мнение, что пластик 05 и 06 переработать нельзя. Это не так.

В России есть технологии и предприятия, перерабатывающие сложные виды пластика, просто вся эта отрасль работает на отходах производств, складов, магазинов, то есть с большими объёмами одинакового вида отходов.
Пластиковые отходы от физических лиц разнообразны (блистеры, игрушки, карточки, различные ёмкости, строительные отрезки и т.п.) Даже если они вручную рассортированы, нет гарантии, что всё будет точно нужного вида пластика. Если будет засор в виде пластика другого вида, то это может испортить партию и даже оборудование.

Поэтому обычному человеку так сложно сдать некоторые виды пластика.

Также есть технологии переработки смеси пластиков в стройматериалы (были представлены на выставке в Крокус Экспо). Есть много небольших перерабатывающих линий по стране, которые делают плитку, черепицу и прочее из смеси пластика, главное чтобы без ПВХ (03).

Как подготовить полистрол к переработке:

Чистое сырьё по возможности сжимайте, снимайте термоусадочную плёнку.

Куда сдать полистирол в Москве и Подмосковье:

Куда сдать вспененный полистирол (пенопласт) в Москве и Подмосковье:

К сожалению, практически все пункты приёма в Московском регионе остановили приём пенопласта из-за сложностей у переработчиков.

  • Белый пенопласт (как от упаковки техники) можно сдать на акциях проекта “РеУтилизация” либо посредством их Экотакси.

В контейнеры “РеУтилизации” пенопласт сдать нельзя! Вспененные подложки также не принимаются!

Ранее Собиратор, Эколайн и МКМ-Логистика принимали и передавали на переработку вспененные подложки, но из-за трудностей с поиском переработчика в декабре 2020 остановили сбор. 

Пожалуйста, старайтесь избегать покупок продуктов в такой упаковке!

🌍  Найти куда сдавать вторсырьё в вашем городе удобнее на нашей карте экологических движений России и СНГ

⁉ Если у вас есть дополнительная полезная информация для этой страницы — напишите нам на почту [email protected]


Этот сайт — уникальный в России справочник о раздельном сборе, поддерживаемый волонтёрами и редактором движения «РазДельный Сбор». Нам нужна ваша поддержка!

33 870

Полистирол

| химическое соединение | Britannica

полистирол , твердая, жесткая, блестяще прозрачная синтетическая смола, полученная путем полимеризации стирола. Он широко используется в сфере общественного питания в качестве жестких подносов и контейнеров, одноразовой столовой посуды и вспененных чашек, тарелок и мисок. Полистирол также сополимеризуется или смешивается с другими полимерами, что придает твердость и жесткость ряду важных пластмассовых и резиновых изделий.

Стирол получают реакцией этилена с бензолом в присутствии хлорида алюминия с образованием этилбензола.Бензольная группа в этом соединении затем дегидрируется с образованием фенилэтилена или стирола, прозрачного жидкого углеводорода с химической структурой CH 2 = CHC 6 H 5 . Стирол полимеризуется с использованием радикально-радикальных инициаторов, главным образом, в объемных и суспензионных процессах, хотя также используются методы растворения и эмульсии. Структуру полимерного повторяющегося звена можно представить как:

Подробнее по этой теме

основные промышленные полимеры: полистирол (ПС)

Эта жесткая, относительно хрупкая термопластичная смола полимеризуется из стирола (Ch3 = CHC6H5).Стирол, также …

Присутствие боковых фенильных (C 6 H 5 ) групп является ключом к свойствам полистирола. Твердый полистирол прозрачен благодаря этим большим кольцевым молекулярным группам, которые предотвращают упаковку полимерных цепей в плотные кристаллические структуры. Кроме того, фенильные кольца ограничивают вращение цепей вокруг углерод-углеродных связей, придавая полимеру заметную жесткость.

Полимеризация стирола известна с 1839 года, когда немецкий фармацевт Эдуард Симон сообщил о его превращении в твердое вещество, позднее названное метастиролом.Еще в 1930 году полимер не нашел коммерческого применения из-за хрупкости и растрескивания (незначительное растрескивание), которые были вызваны примесями, которые привели к сшиванию полимерных цепей. К 1937 году американский химик Роберт Драйсбах и другие сотрудники физической лаборатории Dow Chemical Company получили очищенный мономер стирола путем дегидрирования этилбензола и разработали экспериментальный процесс полимеризации. К 1938 году полистирол производился серийно. Он быстро стал одним из самых важных современных пластиков благодаря низкой стоимости производства больших объемов мономера стирола, простоте формования расплавленного полимера при литье под давлением, а также оптическим и физическим свойствам материала.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Пенополистирол ранее изготавливали с помощью хлорфторуглеродных пенообразователей — класса соединений, запрещенных по экологическим причинам. Теперь вспененный пентаном или углекислым газом, полистирол превращается в изоляционные и упаковочные материалы, а также в пищевые контейнеры, такие как чашки для напитков, картонные коробки для яиц, одноразовые тарелки и подносы. К изделиям из твердого полистирола относятся отлитые под давлением столовые приборы, видеокассеты и аудиокассеты, а также футляры для аудиокассет и компакт-дисков.Многие свежие продукты упаковываются в прозрачные поддоны из полистирола вакуумного формования из-за высокой газопроницаемости и хорошей паропроницаемости материала. Прозрачные окошки во многих почтовых конвертах сделаны из полистирольной пленки. Кодовый номер переработки пластика полистирола — №6. Продукты из переработанного полистирола обычно расплавляют и повторно используют во вспененной изоляции.

Несмотря на свои выгодные свойства, полистирол хрупкий и легковоспламеняющийся; он также размягчается в кипящей воде и без добавления химических стабилизаторов желтеет при длительном пребывании на солнце.Для уменьшения хрупкости и повышения ударной вязкости более половины всего производимого полистирола смешивается с 5-10% бутадиенового каучука. Эта смесь, подходящая для игрушек и деталей бытовой техники, продается как ударопрочный полистирол (HIPS).

Полистирол

Модель выше является изображением модели pdb. Вы можете просмотреть
, щелкнув здесь, или вы можете просто щелкнуть по самому изображению.
В любом случае, не забудьте закрыть новое окно, которое открывает
с 3D-моделью в нем, когда будете готовы вернуться сюда.


Краткий обзор полистирола нажмите здесь!
Полистирол — недорогой и твердый пластик, и наверное только полиэтилен чаще встречается в вашей повседневной жизни. Внешний корпус компьютер, который вы сейчас используете, вероятно, сделан из полистирола. Модель автомобили и самолеты производятся из полистирола, а также производятся в форма упаковки из пенопласта и изоляции (пенополистирол TM — одна марка пенополистирола). Прозрачный пластиковый питьевой чашки изготовлены из полистирола.Так много формованных части на внутри вашей машины, как ручки радио. Полистирол также используется в игрушки и корпуса таких вещей, как фены, компьютеры и кухонная техника.

Полистирол — это виниловый полимер. Конструктивно это длинная углеводородная цепь с фенильной группой, присоединенной к каждой другой атом углерода. Полистирол получают путем свободнорадикальной виниловой полимеризации из мономер стирол.

Это лучшее представление о том, как выглядит мономер стирол:

Модель выше является изображением модели pdb. Вы можете просмотреть
, щелкнув здесь, или вы можете просто щелкнуть по самому изображению.
В любом случае, не забудьте закрыть новое окно, которое открывает
с 3D-моделью в нем, когда будете готовы вернуться сюда.

Давай, поиграй с этим!


Полистирол также входит в состав твердой резины, называемой поли (стирол-бутадиен-стирол) или каучук SBS. Каучук СБС — это термопластичный эластомер.

Полистирол будущего

Появился новый вид полистирола — синдиотактический полистирол. Это другое, потому что фенильные группы на полимерной цепи присоединены к чередующимся стороны основной цепи полимера.«Обычный» или атактический полистирол не имеет порядка в отношении сторона цепи, к которой присоединены фенильные группы.

Вы можете увидеть новый синдиотактический полистирол рядом со старым атактическим полистирол в 3-D, нажав здесь. Новый синдиотактический полистирол кристаллический, и плавится при 270 o C. Но это намного дороже!

Синдиотактический полистирол изготавливается из металлоцена. каталитическая полимеризация.

Вперед, бей!

Но есть еще кое-какие забавные вещи, которые вы можете сделать со старомодной атактикой. полистирол.Хотите увидеть что-то действительно отличное?

Что бы произошло, если бы мы возьмем мономер стирола и радикально его полимеризуем, но допустим, мы добавим в смесь немного полибутадиенового каучука. Взгляните на полибутадиен, и вы увидите, что в нем есть двойные связи, которые могут полимеризоваться. В итоге мы получаем сополимеризацию полибутадиена с мономером стирола, чтобы получить тип сополимера, называемый прививкой. сополимер. Это полимер с растущими из него полимерными цепями, который представляет собой полимер, отличный от основной цепи.В данном случае это цепочка из полистирола, из которой вырастают цепочки полибутадиена.

Эти эластичные цепи, свисающие с основной цепи, делают некоторые хорошие вещи для полистирола. Имейте в виду, что гомополимеры полибутадиена и полистирола не смешиваются. Таким образом, ветви полибутадиена изо всех сил стараются разделиться по фазе и сформировать маленькие шарики, как вы видите на рисунке. изображение ниже. Но эти маленькие шарики всегда будут связаны с фазой полистирола. Итак, они воздействуют на этот полистирол.Они поглощают энергию, когда полимер чем-то ударяется. Они придают полимеру эластичность, которой нет у обычного полистирола. Это делает его более прочным, не таким хрупким и способным выдерживать более сильные удары, не ломаясь, чем обычный полистирол. Этот материал получил название ударопрочный полистирол или сокращенно HIPS.

Я открою вам небольшой секрет. Не все цепочки в HIPS разветвлены таким образом. Там также смешано много цепочек простого полистирола и простого полибутадиена.Это делает HIPS тем, что мы называем несмешиваемой смесью полистирола и полибутадиена. Но это привитые молекулы полистирола-полибутадиена. которые заставляют всю систему работать, связывая две фазы (фазу полистирола и фазу полибутадиена) вместе.

HIPS можно смешивать с полимером, называемым поли (фениленоксидом) или PPO. Эта смесь HIPS и PPO производится GE и продается как Норил ТМ .

Другие полимеры, используемые в качестве пластмасс, включают:


Полистирол — обзор | Темы ScienceDirect

6.6 Полистирол (PS)

Обладая низкой стоимостью, низкой плотностью, прозрачностью, стабильностью размеров и приспособляемостью к радиационной стерилизации, полистирол обладает многими привлекательными характеристиками для медицинского применения. Полистирол бывает двух видов — кристаллический полистирол и ударопрочный полистирол (HIPS). Применение кристаллического полистирола в медицине включает лабораторное оборудование, такое как чашки Петри и лотки для культур тканей. Ударопрочный полистирол используется в термоформованных изделиях, таких как лотки для катетеров, лотки для сердечных насосов и эпидуральные лотки.И кристаллический полистирол, и HIPS находят применение в респираторном оборудовании, втулках шприцев и всасывающих канистрах. В лабораторном оборудовании и упаковке наборов и лотков полистирол может конкурировать с ПВХ, полипропиленом и акрилом.

Смолы кристаллического полистирола стеклообразные и кристально чистые и чаще всего поставляются в форме гранул размером в одну восьмую дюйма. Известные как ориентированный полистирол (OPS), они хрупкие до двухосной ориентации, а затем становятся сравнительно гибкими и прочными. Ориентированный полистирол образуется путем растягивания листа полистирола в поперечном направлении, что делает более жестким то, что в противном случае было бы более хрупким тонким листом.Кристаллы общего назначения, полученные литьем под давлением, обычно используются в таких областях, как столовые приборы, чашки для напитков, стаканы, медицинское и диагностическое лабораторное оборудование, офисные аксессуары и предметы домашнего обихода. Высокотемпературные кристаллы, полученные литьем под давлением, обычно используются в таких областях, как медицинские продукты, упаковка, посуда, офисные аксессуары и контейнеры для компакт-дисков. Экструдированные высокотемпературные кристаллы потребляются в листах пенопласта (которые используются в лотках для мяса, картонных коробках для яиц, столовой посуде и упаковке для фаст-фуда), в ориентированных полистирольных пленках (которые используются в основном в лотках для печенья, торта и деликатесов), и в составе пенопласта (который используется для изоляции зданий и сооружений).

Высокопрочные полистиролы модифицированы полибутадиеновыми эластомерами. Марки с высокой ударопрочностью обычно содержат в диапазоне 6–12% эластомеров, а марки со средней ударной способностью — около 2–5%. Смолы из ударопрочного полистирола (HIPS) обладают такими характеристиками, как простота обработки, хорошая стабильность размеров, ударная вязкость и жесткость. В последние годы некоторые высокоэффективные сорта смол HIPS стали конкурировать с более дорогостоящими инженерными смолами в таких приложениях, как бытовая техника и бытовая электроника.Смолы HIPS, полученные литьем под давлением, используются в таких областях, как бытовая техника, офисные аксессуары премиум-класса, потребительские товары и игрушки. Экструдированные смолы HIPS используются в таких приложениях, как упаковка пищевых продуктов, контейнеры для молочных продуктов, торговые автоматы и чашки для напитков, крышки, тарелки и миски.

Полистирол бывает трех разных форм. Эти формы называются атактическим полистиролом, изотактическим полистиролом и синдиотактическим полистиролом (SPS) (рис. 6.30). Наиболее коммерчески доступный полистирол — это атактический полистирол.

Рисунок 6.30. Конструкции из полистиролов.

6.6.1 Производство полистирола

Полистирол легко получить путем свободнорадикальной полимеризации стирола с использованием радикальных инициаторов (рис. 6.31). Стирол с разбавителями или без них смешивают с инициатором свободных радикалов, таким как пероксид дибензоила, и нагревают до температуры 120 ° C. Несколько стадий полимеризации приводят к растворению полимера в мономере или растворе разбавителя. Непрореагировавший мономер и разбавитель испаряются в вакууме, оставляя высокомолекулярный полистирол.

Рисунок 6.31. Свободнорадикальная полимеризация полистирола.

Ударопрочный полистирол производится путем включения резиноподобного полибутадиена во время полимеризации. Во время полимеризации полибутадиен инкапсулируется в полистирол. Прививки и частичное поперечное сшивание бутадиена также могут иметь место, влияя на свойства конечного полимера.

Синдиотактический полистирол (sPS) был впервые коммерциализирован компанией Idemitsu Petrochemical Company, Ltd., Япония, и разработан совместно с Dow в 1988 году.Синдиотактический полистирол — это новый полукристаллический технический полимер, который производится путем непрерывной полимеризации с использованием металлоценовых катализаторов, подобных тем, которые используются для полиолефинов. Подобно обычному аморфному полистиролу, sPS является хрупким, но его можно армировать стеклом или легировать другими полимерами для повышения ударной вязкости. sPS чрезвычайно химически стойкий, имеет высокую температуру плавления (270 ° C) и очень низкую диэлектрическую проницаемость. Его высокая текучесть и простота обработки делают его отличным кандидатом для тонкостенных применений.

6.6.2 Свойства полистирола

Полистирол общего назначения или кристаллический полистирол является хрупким материалом. Материал может быть подвергнут литью под давлением и экструдирован. Приложения для литья под давлением включают лабораторное оборудование, диагностическое оборудование и компоненты устройств. Экструдированные сорта можно использовать в лотках и упаковке.

Ударопрочный полистирол используется в лотках, контейнерах, медицинских компонентах и ​​упаковке. В таблице 6.26 сравниваются два типа материалов, а в таблице 6.27 перечислены некоторые из их свойств.

Таблица 6.26. Сравнение полистирола общего назначения (кристаллический) и ударопрочного

Хорошее электрическое и электрическое свойства растрескивание под напряжением
полистирола общего назначения (кристаллического) ударопрочного полистирола
Жесткий и твердый Прочный; повышенная ударопрочность
Кристальная чистота; водно-белый прозрачность От полупрозрачного до непрозрачного
Высокий глянец Сниженный блеск
Хорошая стабильность размеров Удовлетворительная стабильность размеров
Низкое водопоглощение Пониженное водопоглощение
Пониженные электрические свойства
Превосходная технологичность Превосходная обрабатываемость
Отличная устойчивость к гамма-излучению Удовлетворительная устойчивость к гамма-излучению
Ограниченная химическая стойкость Пониженная химическая стойкость
Менее подвержено растрескиванию под воздействием окружающей среды

Таблица 6.27. Свойства полистиролов

127
Свойство Единицы ПС общего назначения ПС Hi Impact ПС синдиотактические
Плотность 1,02
Показатель преломления 1,589 1,59
Точка плавления ° C температура перехода
Стекло -95 85-95 100
HDT в (0.46 МПа или 66 фунтов на кв. Дюйм) ° C 85-95 75-85 108
HDT при (1,8 МПа или 264 фунтов на кв. Дюйм) ° C 90-100 85-95 90
Температура размягчения ° C 75-85 60-110 205
Предел прочности на разрыв МПа 40 11-45 11-45 Удлинение при разрыве% 1-40 10-100 5-20
Модуль упругости при изгибе ГПа 3 0.6-3 3,2
Ударная вязкость, с надрезом Дж / м 20-50 70-100 60-70
% Кристалличность% 60-80%
6.6.3 Химическая стойкость полистирола

Полистирол не устойчив к ароматическим, алифатическим и хлорорганическим растворителям. Он также не устойчив к циклическим эфирам, кетонам, кислотам и основаниям. Полистирол умеренно устойчив к алифатическим спиртам с более высокой молекулярной массой, разбавленным водным кислотам и основаниям, а также к отбеливателям.Он устойчив к низкомолекулярным спиртам, оксиду этилена, окислителям и дезинфицирующим средствам (таблица 6.28).

Таблица 6.28. Химическая стойкость полистирола

6.6.4 Стерилизация полистирола

Полистирол не рекомендуется для стерилизации паром и автоклавом. Их низкие температуры теплового искажения вызовут деформацию и деформацию деталей (Таблица 6.29).

Таблица 6.29. Стерилизация полистирола

Полистирол можно стерилизовать оксидом этилена.На рис. 6.32 показано, что физические свойства полистирола общего назначения и ударопрочного полистирола существенно не изменяются при воздействии оксида этилена [50].

Рисунок 6.32. Влияние стерилизации EtO на полистирол. (а) Сохранение собственности. (б) Стабильность цвета.

Полистирол очень устойчив к гамма-излучению из-за высокого содержания ароматических веществ. Электронные облака способны поглощать излучение, исключая образование реактивных свободных радикалов. Таким образом, полистиролы можно облучать несколькими дозами гамма- и электронно-лучевого излучения.Рисунок 6.33 показывает, что полистирол сохраняет до 80% своих свойств даже после дозы облучения 100 кГр. Его цвет также не претерпел значительных изменений. Первоначальное изменение цвета после дозы облучения 100 кГр возвращается к исходному в течение недели [89].

Рисунок 6.33. Воздействие гамма-излучения на полистирол.

6.6.5 Биосовместимость полистирола

Полистирол обычно не используется там, где требуется биосовместимость. Биосовместимые сорта сополимеров полистирола доступны от конкретных поставщиков.

6.6.6 Соединение и сварка полистирола

Сваривать полистирол общего назначения сложно из-за его хрупкости. Ударопрочный полистирол можно сваривать, используя такие методы, как ультразвуковая и радиочастотная сварка. Он может быть связан с растворителем, но следует соблюдать осторожность, чтобы не вызвать растрескивания под воздействием окружающей среды. Большинство клеев можно использовать как с полистиролом, так и с ударопрочным полистиролом.

6.6.7 Применение полистирола — примеры

Благодаря своей прозрачности, низкой стоимости и отличной технологичности полистирол общего назначения используется в лабораторном оборудовании для диагностики и анализа, а также в медицинской упаковке.Ударопрочный полистирол используется в медицинских деталях, компонентах и ​​приложениях (например, бутылках и контейнерах), где ударопрочность более важна. В таблице 6.30 подробно описаны некоторые области применения и требования к полистиролам.

Таблица 6.30. Применение полистирола в медицинских устройствах

диагностическое оборудование для дома13

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Андервуд, А. Дж. (1997). Эксперименты в области экологии: их логический план и интерпретация с использованием дисперсионного анализа . Кембридж, Великобритания: Издательство Кембриджского университета.

Google Scholar

van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B.D., Van Franeker, J.A., et al. (2015).Глобальный перечень небольшого плавающего пластикового мусора. Environ. Res. Lett. 10: 124006. DOI: 10.1088 / 1748-9326 / 10/12/124006

CrossRef Полный текст | Google Scholar

Победитель, Р. У. (1989). Множественные тесты продолжительности жизни для определения пищевой адекватности нескольких диет и вод для выращивания для Ceriodaphnia dubia . Environ. Toxicol. Chem. 8, 513–520. DOI: 10.1002 / etc.5620080608

CrossRef Полный текст | Google Scholar

Вудалл, Л.К., Санчес-Видаль, А., Каналс, М., Патерсон, Г. Л., Коппок, Р., Слейт, В. и др. (2014). Глубокое море является основным стоком для микропластикового мусора. R. Soc. Откройте Sci . 1: 140317. DOI: 10.1098 / RSOS.140317

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Всемирная организация здравоохранения (2004 г.). Руководство по качеству питьевой воды [M], 3-е изд. Всемирная организация здравоохранения.

Ксантос, Д., Уокер, Т. Р. (2017). Международная политика по сокращению загрязнения морской среды пластиком от одноразового пластика (пластиковые пакеты и микрошарики): обзор. Март Загрязнение. Бык . 118, 17–26. DOI: 10.1016 / j.marpolbul.2017.02.048

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Обзор полистирола

Полистирол — это универсальная пластмассовая смола, используемая для производства множества потребительских и промышленных товаров. Обычно он используется в двух формах: твердый и пенный. Твердый полистирол используется для изготовления автозапчастей, электроники, игрушек, кухонной техники и многого другого. Пенополистирол используется для изготовления изоляции зданий и бытовой техники, досок для серфинга, легкой защитной упаковки, картонных коробок для яиц, подносов для мяса, упаковки для предприятий общественного питания и многого другого.

Полистирол получают путем нагревания мономера стирола, вызывающего реакцию, которая заставляет звенья стирола присоединяться друг к другу и образовывать длинноцепочечный полимер, известный как полистирол. Стирол, химический элемент, используемый в производстве многих продуктов, также естественным образом содержится в таких продуктах, как клубника, корица, кофе и говядина.

Группа упаковки пластмасс для пищевых продуктов (PFPG)

Plastics Foodservice Packaging Group, входящая в состав Американского химического совета (ACC), создает программы для просвещения общественности о важности и преимуществах пластиковой упаковки для пищевых продуктов, в первую очередь ориентированных на упаковку для предприятий общественного питания, сделанную из полистирола.

Ознакомьтесь с нашими Веб-сайт Plastic Foodservice Facts, чтобы узнать, как PFPG предоставляет информацию государственным политикам, студентам, учителям, предприятиям и широкой общественности о том, как производится пластиковая упаковка для общественного питания и ее преимуществах для потребителей и окружающей среды, а также ее важные преимущества для здоровья и безопасности. Пластиковая упаковка для предприятий общественного питания обеспечивает наш современный образ жизни, обеспечивая удобный и доступный способ насладиться едой, закусками и напитками — так, как мы живем сегодня.

Plasticfoodservicefacts.com представляет краткие сведения о пластиковых стаканчиках, тарелках, посуде и других продуктах общественного питания, объясняет, как они работать экологически и подчеркивать инновационные программы утилизации по всей стране. Проверить новости и некоторые из вопросы государственной политики в отношении пластмасс и того, как мы едим. Понять, почему предприятия общественного питания в крупных городах предпочли бы, чтобы их пенополистирол был переработан, а не ограничен.И увидеть и услышать, как они стали часть нашей культуры.

Полистирол — Beachapedia

Полистирол — это пластик, который производится из невозобновляемого ископаемого топлива и синтетических химикатов в двух основных формах:

  1. Пенополистирол (EPS), который обычно используется для изготовления дешевой одноразовой посуды (чашки, тарелки, «раскладушки» и т. Д.) И для упаковки для защиты товаров во время транспортировки.
  2. Жесткий полистирол, который часто используется для изготовления различных предметов, включая одноразовые столовые приборы, пластиковые модели, коробки для компакт-дисков и DVD-дисков, а также корпуса для детекторов дыма.


Не называйте это пенополистиролом TM

Styrofoam ™ — зарегистрированная торговая марка DuPont (ранее Dow Chemical Company) 84, используемая для строительных изоляционных материалов из «экструдированного полистирола» (XPS). Пищевую посуду (чашки, тарелки, подносы и т. Д.), Изготовленную из пенополистирола, часто ошибочно называют торговой маркой Styrofoam ™. Dupont потратила много денег на отслеживание громких злоупотреблений этим термином и на рассылку писем о прекращении противоправных действий. Помните об этом, выступая за запрет посуды из пенополистирола, и подумайте о том, чтобы назвать ее просто посудой из пеноматериала.

Воздействие на морскую жизнь

Пищевая посуда из пенополистирола очень дешевая в производстве и дешевая для покупки в ресторанах, но может нанести серьезный ущерб морской среде:

Подстилка из пенополистирола на пляже в Хантингтон-Бич, Калифорния.
  1. Пена EPS не подвергается биологическому разложению в течение нашей жизни. Он может фоторазложиться и / или разбиться на мелкие кусочки, которые сложнее очистить.
  2. Продукты
  3. EPS примерно на 95% состоят из воздуха и легко выдуваются из мусорных баков в окружающую среду. [1]
  4. Пена
  5. EPS обычно изготавливается из невозобновляемого ископаемого топлива и синтетических химикатов, которые со временем могут вымываться, особенно при контакте с горячей, жирной или кислой пищей. При производстве полистирола образуется большое количество парниковых газов, а также жидких и твердых отходов.
  6. Животные могут принять пенополистирол за еду или материалы для гнездования. [2]
  7. Несмотря на то, что пенополистирол стоит недорого, его очистка может быть дорогостоящей. Поскольку они настолько недороги, изделия из полистирола часто выбрасываются или засоряются после однократного использования.Многие муниципалитеты, которые должны соблюдать правила ливневой канализации, ограничивающие количество мусора в водных путях, уже потратили значительные средства налогоплательщиков на попытки контролировать, улавливать и удалять мусор, включая EPS.
  8. Утилизация
  9. EPS часто неэкономична, поэтому большая часть его вывозится на свалки или захламляется. Кроме того, загрязнение пищевых остатков часто разрушает поток переработки пищевой посуды из пенополистирола. Эту форму пластикового загрязнения следует решать у источника, а не полагаться на большее количество мусорных баков и «конец трубы» решений по улавливанию и удалению мусора.
  10. Исследование «Две реки» в Лос-Анджелесе показало, что более 1,6 миллиарда кусков пенопласта были отправлены в океан за трехдневный период во время съемок в 2004-2005 гг. 71% из 2,3 миллиарда пластиковых предметов, охваченных исследованием, были изделиями из пенопласта, что составило 11% от общего веса пластиковых загрязнений, собранных в ходе обследований. [3]
  11. И есть опасения по поводу воздействия на здоровье человека. Согласно Национальной токсикологической программе США по здравоохранению и социальным услугам, мономер стирола (строительный блок для полистирола) считается канцерогеном для человека.

Что можно сделать, чтобы решить проблему мусора и загрязнения пластиковой посуды?

  1. Переход к экологически безопасным решениям для ресторанов и предприятий. Запретов и других законодательных действий можно было бы избежать, приняв расширенную ответственность производителя и попытавшись сократить количество одноразовых предметов. Если клиенты едят / пьют в ресторане, предложите им вымыть тарелки, стаканы и кружки, а не выбросить. Если клиенты делают заказы вне дома, предложите им поощрения за многоразовые кружки, сумки и т. Д.если возможно. Многие отделения Surfrider Foundation имеют программу Ocean Friendly Restaurants, чтобы стимулировать отказ от пищевой посуды из пенополистирола, потому что это один из самых популярных предметов при уборке пляжей.
  2. Запреты на полистирол на местном, региональном или государственном уровне. Наиболее распространенным продуктом, на который распространяется запрет на использование пенополистирола, является пищевая посуда (чашки, тарелки, подносы и т. Д.), В то время как в некоторых случаях также запрещена пищевая посуда из твердого полистирола. Другие города, которые запретили EPS, включают Сан-Диего, Майами-Бич, Сиэтл и Вашингтон, округ Колумбия.Manhattan Beach продвигает запрет на пищевую посуду из полистирола еще дальше, запрещая весь полистирол, включая пенополистирол и жесткий полистирол. Другим примером является Сан-Франциско, где постановление выходит за рамки традиционного запрета на питание из пенополистирола и регулирует такие продукты из пенополистирола, как упаковочные материалы, холодильники и контейнеры для льда, а также игрушки для бассейнов или пляжа.


Посмотрите это видео от профессионального серфера Торри Мейстера и Surfrider Foundation.

А также посмотрите следующее видео, рассказанное 6-летним Джеком из Корпус-Кристи, штат Техас.

Какие есть альтернативы пенополистиролу и другой одноразовой пластиковой посуде?

  1. По возможности используйте предметы многоразового использования (прочные тарелки, чашки, посуду).
  2. Если предметы многократного использования нецелесообразны, исследуйте одноразовые предметы, которые являются более экологичными. Существует множество вариантов по ценам, которые становятся конкурентоспособными по сравнению с полистиролом. Ознакомьтесь с Руководством по пищевой посуде, дружественному к океану, для получения дополнительной информации.

Список литературы

  1. ↑ Р.В. Сарсби. 2007. Геосинтетика в гражданском строительстве. Издательство Вудхед.
  2. ↑ J.G.B. Деррайк, «Загрязнение морской среды пластиковым мусором: обзор», Бюллетень по загрязнению морской среды 44 (2002)
  3. ↑ C.J. Moore, G.L. Lattin и A.F. Zellers. Журнал интегрированного управления прибрежной зоной 11 (1): 65-73 (2011)
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Приложение Требования Тип смолы
Лабораторное оборудование и средства диагностики (чашки Петри, лабораторное оборудование, пробирки, продукты для диагностики in vitro, компоненты для тканевых культур, флаконы, многолуночные лотки, пипетки роликовые бутылки) Прозрачность Полистирол общего назначения
Водно-белая прозрачность
Химическая стойкость
Жесткость
Гамма-стерилизация
Полистирол ударопрочный
Непрозрачный
Стабильность размеров
Подносы для стерилизации; хирургические инструменты; стоматологическое оборудование Hiflow Синдиотактический полистирол
Тонкие стенки
Стабильность размеров
Механическая прочность
Термостойкость
— обзор | Темы ScienceDirect

7.13 Выводы и рекомендации

EPS в основном используется в качестве упаковочного или изоляционного материала в строительной промышленности и других отраслях. Он имеет низкую теплопроводность, что делает его хорошим изоляционным материалом, который легко транспортировать. EPS имеет низкую плотность и почти нулевую прочность на сжатие. Большое количество пенополистирола образуется и попадает в отходы. Существует множество технических, экологических и экономических стимулов для переработки отходов EPS. Отходы EPS можно измельчить и отсортировать, чтобы использовать их в качестве LWA для производства LWAC; таким образом, способствуя устойчивому развитию.Однако использование не только экологически чистых материалов, но и экологически чистых технологий имеет важное значение для устойчивого развития.

Наиболее экономичным способом использования отходов EPS в бетоне, по-видимому, является использование немодифицированных измельченных отходов EPS непосредственно в бетоне или растворе в качестве LWA. Это будет очень полезно, так как сократит количество отходов, отправляемых на свалки, и утилизирует их для частичной замены первичных материалов, добытых в карьерах. Заполнители EPS легкие и могут вызывать расслоение при смешивании с бетоном.Следовательно, обработка заполнителя EPS различными методами должна обеспечить получение легкого бетона с меньшей сегрегацией. Обработка может включать добавление связующего, термообработку и покрытие. Следует учитывать преимущества и недостатки каждого лечения. Некоторые из этих методов могут быть неэкономичными, эффективными, простыми в применении, доступными в развивающихся странах и экологически безопасными, поскольку утилизация отходов в этих странах все еще находится в стадии разработки.

Согласно исследовательской работе, представленной в этой главе, большинство проведенных экспериментов касалось механических свойств бетона, содержащего модифицированные и немодифицированные частицы EPS.Прогнозирование свойств бетона, содержащего различные формы пенополистирола, должно быть исследовано. Также следует рассмотреть возможность использования пенополистирола в самоуплотняющемся легком бетоне.

Согласно предыдущим исследованиям, проведенным на бетоне EPS, представленным в Таблице 7.2, тенденция всех этих исследований заключается в том, что увеличение содержания заполнителя EPS приведет к более слабому бетону; это происходит из-за того, что частицы EPS довольно слабы. Было обнаружено, что прочность на сжатие бетонов из пенополистирола прямо пропорциональна плотности бетона.Это означает, что прочность на сжатие пенополистирола увеличивается с увеличением плотности бетона. Прочность на сжатие пенополистирола увеличивалась при уменьшении размера валика пенополистирола и увеличивалась при увеличении естественного крупного заполнителя. Было показано, что для бетона с более низкой плотностью (менее 1000 кг / м 3 ) меньший размер валика из пенополистирола практически не влияет на прочность бетона на сжатие. Однако, в отличие от этих наблюдений, именно в бетоне с более низкой плотностью меньшие шарики EPS оказали наибольшее влияние на прочность на сжатие.Также было показано, что из-за микротрещин усадочного действия в пенополистироле-бетоне водопоглощение бетона общим и капиллярным действием увеличивается с увеличением объема пенополистирола в бетоне. Исследования LWAC, содержащих EPS, активизировались в последнее десятилетие. Однако в наших знаниях о свойствах и поведении пенополистирола все еще есть пробелы. Одна из причин заключается в том, что свойства бетона из пенополистирола могут значительно различаться в зависимости от типа пенополистирола и технологии переработки использованного пенополистирола, поэтому любые выводы могут быть верными только для конкретных изученных случаев и используемых приложений.

Границы | Фильтрат из чашек из вспененного полистирола токсичен для водных беспозвоночных (Ceriodaphnia dubia)

Введение

Пластиковый мусор стал проблемой для морских и пресноводных местообитаний во всем мире (Kershaw and Rochman, 2015; Löhr et al., 2017). Пластиковые предметы многих типов, целые и фрагментированные, встречаются на пляжах (Browne et al., 2015), плавают на поверхности океанов (van Sebille et al., 2015) и озер (Eriksen et al., 2013), в глубокое море (Woodall et al., 2014), а также в большом разнообразии дикой природы (Gall, Thompson, 2015). Было предложено множество решений по снижению выбросов пластика в окружающую среду. Некоторые из этих решений применяются в местном масштабе (Xanthos and Walker, 2017), в то время как другие нацелены на решение проблемы на международном уровне (Borrelle et al., 2017; Löhr et al., 2017).

В общем, не существует универсального решения для уменьшения количества пластикового мусора, и поэтому, вероятно, потребуется множество решений, работающих в тандеме.Сюда могут входить инновации в области более экологичных пластиковых изделий, новая и улучшенная инфраструктура управления отходами, глобальный фонд для помощи в оплате разработки новой инфраструктуры и устойчивых технологий, образовательные кампании, очистка и запрет на продукцию (Borrelle et al., 2017) . Запреты на одноразовые пластиковые изделия стали популярным решением, поскольку одноразовые предметы являются одними из наиболее часто встречающихся пластиковых предметов туалета на пляжах (например, крышки для бутылок, пластиковые пакеты, пластиковые бутылки, контейнеры на вынос из пенополистирола (EPS), соломинки ) (Ocean Conservancy, 2017).В отношении некоторых одноразовых пластиковых предметов (например, пластиковых пакетов и микрогранул в средствах личной гигиены) запреты постоянно предлагаются и передаются по всему миру (Xanthos and Walker, 2017). EPS (часто называемый широкой публикой пенополистиролом ™) — это еще один предмет, который сейчас находится на рассмотрении в нескольких муниципалитетах (http://www.surfrider.org/pages/polystyrene-ordinances). Чтобы лучше понять, как научные данные могут использоваться в таком законодательстве, мы изучили доступную научную литературу, чтобы проанализировать доказательства о загрязнении и воздействии.Мы также провели собственные эксперименты по измерению химического выщелачивания продуктов из полистирола, контактирующих с пищевыми продуктами, и измерения токсичности фильтрата.

Что касается загрязнения, EPS обычно считается одним из основных видов мусора, собираемого с берегов и пляжей во всем мире (Garrity and Levings, 1993; Bravo et al., 2009; Lee et al., 2013; Ocean Conservancy, 2017). , в том числе в Антарктиде (Convey et al., 2002). Он также был обнаружен на поверхности открытого океана (Morét-Ferguson et al., 2010) и на морском дне (Keller et al., 2010). Широко распространенное загрязнение привело к обнаружению EPS в содержимом кишечника морских беспозвоночных и позвоночных животных (Boerger et al., 2010; Schuyler et al., 2014; Jang et al., 2016). Помимо физического материала EPS, стиролы, мономерные строительные блоки полимера, обнаруживаются в океанской воде и отложениях во всем мире (Kwon et al., 2015, 2017). Поскольку полистироловый пластик считается одним из единственных источников стирола в окружающей среде, ожидается, что загрязнение будет вызвано выветриванием и выщелачиванием полистирола в океанах (Kwon et al., 2017). Кроме того, в некоторых частях мира EPS упоминается как источник других химических веществ для окружающей среды (Rani et al., 2015; Jang et al., 2017) и дикой природы (Jang et al., 2016). В Азии гексабромциклододеканы (ГБЦД) были обнаружены в буях из EPS и других потребительских товарах (Rani et al., 2014). Считается, что это загрязнение происходит из-за переработки материалов EPS с добавлением антипиренов в другие материалы, а именно в материалы, которые не контактируют с пищевыми продуктами. Тем не менее ГБЦД был обнаружен в некоторых продуктах из пенополистирола, используемых для упаковки пищевых продуктов (Rani et al., 2014). Эти результаты могут иметь последствия для людей, когда они используют продукты и / или диких животных, если продукты EPS превратятся в морской мусор и выщелачивают ГБЦД. Та же исследовательская группа обнаружила, что отложения вблизи аквакультурных хозяйств, использующих буи EPS, имеют относительно более высокие концентрации ГБЦД по сравнению с другими участками (Al-Odaini et al., 2015), а мидии, живущие на буях EPS, имеют фрагменты EPS и более высокие концентрации ГБЦД в тканях. чем мидии, питающиеся другими материалами (Jang et al., 2016).Эти исследования показывают, что ГБЦД из EPS может проникать в экологические матрицы, в том числе в диких животных. В целом, нет сомнений в том, что полистирол и связанные с ним химические вещества загрязняют океаны (Kwon et al., 2015; Jang et al., 2016).

Есть опасения, что полистирол может быть более вредным, чем другие типы пластика, поскольку он состоит из относительно опасных химикатов (Lithner et al., 2011). Поскольку микросферы полистирола являются одним из немногих типов микропластиков, доступных в научных компаниях, в нескольких исследованиях были проведены лабораторные испытания на токсичность полистирола.Эти лабораторные исследования показывают, что микросферы из полистирола могут воздействовать на организмы. Здесь выделены только исследования с использованием более экологически значимых концентраций. Лабораторные исследования показывают, что микропластик полистирола может влиять на пищевое поведение (Besseling et al., 2012; Cole et al., 2015), вызывать потерю веса (Besseling et al., 2012) и влиять на воспроизводство (Cole et al., 2015; Sussarellu). et al., 2016) у беспозвоночных. В этих исследованиях использовались микропластические частицы, поэтому неизвестно, связаны ли эти эффекты с физическими пластиковыми частицами или химическим фильтром.В других исследованиях измеряли эффекты, используя только химические вещества, относящиеся к полистиролу. Исследование, в ходе которого проверялась токсичность фильтрата из нескольких пластиковых материалов при комнатной температуре, не обнаружило токсичности при обработке с использованием полистирольной чашки (Bejgarn et al., 2015). В Daphnia magna значения ЛК50 для 48-часовых тестов на токсичность указаны как 23 мг / л для стирола, 75 мг / л для этилбензола, 200 мг / л для бензола и 310 мг / л для толуола (LeBlanc, 1980). Тесты на острую токсичность с использованием толстоголовых гольянов определили ЛК50 для стиролов 10 мг / л (Cushman et al., 1997). Для стиролов эти концентрации на несколько порядков больше, чем в природе (Kwon et al., 2017).

Выщелачивание стирола и других сопутствующих химикатов является одной из причин, почему люди больше озабочены полистиролом, чем другими типами пластмасс. При определенных условиях EPS выщелачивает стирол и бензол, химические вещества, которые обладают известными токсическими свойствами (Гиббс и Маллиган, 1997; Эриксон, 2011; Андерсен и др., 2017; Ниаз и др., 2017). Есть опасения, что EPS может причинить вред, если он выщелачивает химические вещества в окружающую среду и / или в нашу пищу (Sanagi et al., 2008; Рани и др., 2014). Всемирная организация здравоохранения (ВОЗ) указывает максимально допустимый предел в 20 частей на миллиард (ppb) для стирола (World Health Organization, 2004). Количество, которое стирол выщелачивает из полистирола в продукты питания и напитки, варьируется в литературе (примерно от 1 до 300 частей на миллиард), и в нескольких исследованиях проводятся эксперименты по выщелачиванию в различных условиях, с использованием различных пищевых продуктов и / или растворителей (Tawfik and Huyghebaert, 1998), в различных условиях. периоды времени и различные температуры (Ahmad and Bajahlan, 2007; Sanagi et al., 2008). Чтобы попытаться понять концентрации воздействия, которые могут быть реалистичными для воздействия на человека, мы решили провести собственные испытания по выщелачиванию.

Нашей основной целью было лучше понять, как химические вещества выщелачиваются из продуктов из полистирола, которые вступают в контакт с пищевыми продуктами, и есть ли токсичность фильтрата. Мы провели эксперименты по выщелачиванию с обычными пищевыми матрицами, которые потребляются в упаковке из полистирола при соответствующих температурах, чтобы проверить гипотезу о том, что продукты из полистирола выщелачивают стиролы и родственные химические вещества (т.е., этилбензол, толуол, бензол, мета- и пара-ксилол, изопропилбензол и изопропилтолуол) (Ahmad and Bajahlan, 2007) в пищу, потребляемую людьми. Чтобы проверить гипотезу о том, что такие продукты выщелачивания могут быть токсичными, мы провели эксперименты по токсичности, измеряя смертность и репродуктивную способность у стандартизованного подопытного вида Ceriodaphnia dubia . Помимо того, что C. dubia является стандартизированным подопытным видом, он также играет важную роль в пищевых сетях пресноводных местообитаний во всем мире.

Материалы и методы

Эксперименты по выщелачиванию

Эксперименты по выщелачиванию были проведены с несколькими продуктами, изготовленными из полистирола, три из которых были EPS и три из которых не вспенивались. В число изделий из полистирола входили крышки для кофейных чашек, палочки для перемешивания, ложки, чашки из пенополистирола, миски из пенополистирола и контейнеры на вынос из пенополистирола. Все продукты были либо куплены в местных продуктовых магазинах в Торонто, Онтарио, либо переданы в дар из местных кафе и ресторанов. Если материал продукта был неопределенным, для подтверждения типа полимера использовали рамановский спектрометр HORIBA XploRA.

Жидкости и пищевые продукты были выбраны таким образом, чтобы они соответствовали тому, что предполагается использовать для каждого продукта. Это включало тесты на выщелачивание с использованием воды, растворимого кофе, растворимого кофе со сливками (10% липидов) и сахара, растворимого куриного бульона и быстрорастворимого соуса. Процедуры включали кофе в бумажном стаканчике с крышкой из полистирола, кофе со сливками и сахаром в чистом стеклянном стакане с палочкой из полистирола, суповый бульон в чистом стеклянном стакане с ложкой из полистирола, воду, кофе и кофе со сливками и сахаром в чашка из пенополистирола, суповой бульон в миске из пенополистирола и подливка из пенополистирола на вынос.Во всех процедурах использовалось 250 мл жидкости, за исключением бумажного стаканчика с крышкой из полистирола (200 мл кофе), выносного контейнера из пенополистирола (50 мл подливки) и стакана из пенополистирола с водой (200 мл). Испытания на выщелачивание длились 30 минут — примерно столько же, сколько мы могли бы ожидать, что человек будет есть или пить в продукте из полистирола. Для бумажного стаканчика с крышкой из полистирола стакан опрокидывали каждые 2 мин, чтобы имитировать питье и позволить жидкости контактировать с крышкой.

Для экспериментов по выщелачиванию мы провели три отдельных испытания, используя температуры, которые реалистичны для горячей еды и напитков — от –70 до 95 ° C (Brown and Diller, 2008; Таблица 1).Для испытания 1 все пищевые и жидкие матрицы были приготовлены с водой при температуре 70 ° C и контактировали с полистирольными продуктами в течение 30 мин. Все жидкие и пищевые матрицы были приготовлены, добавлены к полистироловому продукту и оставлены открытыми (за исключением крышки из полистирола) в течение 30 мин. Каждую обработку проводили в трех повторностях ( n = 3; см. Таблицу 1 для более подробной информации). Для Испытания 2 все обработки были идентичны Испытанию 1, за исключением одной обработки, когда бульон для супа готовили при 95 ° C для чаши из EPS, и другой обработки, когда чашу из EPS нагревали в микроволновой печи в течение 3 минут до температуры 95 ° C, а затем позволяли сидеть вне микроволновой печи без накрытия в течение следующих 27 мин (таблица 1).Каждое лечение проводилось индивидуально ( n = 1). Для испытания 3 все обработки выщелачивали при 95 ° C в течение 30 минут и накрывали чашкой Петри. Чтобы смоделировать «наихудший» сценарий, чашку из пенополистирола разорвали на части и поместили в стеклянную колбу с водой, которую выдерживали при 95 ° C в течение полных 30 минут, кипятя ее на горячей плите (таблица 1). Каждую обработку проводили в трех повторностях ( n = 3). В течение 30 минут жидкости с 70 ° C охлаждались примерно до 30, а жидкости с 95 ° C до 55 ° C. Сразу после 30-минутного периода выщелачивания фильтрат из каждого образца переносили в чистый стеклянный флакон без свободного пространства и хранили в течение ночи при 4 ° C.

Таблица 1 . Подробная информация обо всех вариантах обработки в экспериментах по выщелачиванию.

На следующий день были приготовлены продукты выщелачивания и проанализированы на семь летучих соединений (стирол, бензол, толуол, этилбензол, мета- и пара-ксилол, изопропилбензол и изопропилтолуол) с использованием газовой хроматографии в сочетании с масс-спектрометрией (ГХ-МС). Для Испытания 1 все образцы были проанализированы с использованием Headspace, подключенного к ГХ-МС. Для испытаний 2 и 3 все образцы были проанализированы с использованием продувки и ловушки с ГХ-МС.

Химические стандарты, используемые для анализа, были приобретены у Sigma Aldrich. Во все образцы добавляли 5 мкл суррогатного стандарта (фторбензол, d8-толуол, бромфторбензол).

Для анализа всех образцов в Испытании 1 мы использовали пробоотборник Tekmar HT3 Headspace, соединенный с газовым хроматографом Agilent 7890A с масс-спектрометром Agilent 5975C (MSD) с газом-носителем сверхчистой чистоты (гелий). 10 мл образца вводили в Tekmar HT3, а образец объемом 2 мл из свободного пространства вводили в J&W DB-VRX 20 м × 0.Пленочная колонка 18 мм × 1,0 мкм в режиме разделения (50: 1). Программа печи началась при 35 ° C, выдерживалась в течение 4 минут, увеличивалась на 14 ° C в минуту до 100 ° C, увеличивалась на 20 ° C в минуту до 220 ° C, а затем поддерживалась в течение 2,72 минуты. Agilent 5975 (МСД) работал в режиме полного сканирования (диапазон масс 34–350). Целевые аналиты были количественно определены с использованием экстрагированного иона и подтверждены с использованием времени удерживания и соотношения подтверждающих ионов. Концентрации определялись с помощью внешней калибровки с использованием суррогатных стандартов. Предел обнаружения для этого анализа составил 25 нг / мл.

Для анализа всех образцов в Испытаниях 2 и 3 использовалась система очистки и улавливания Tekmar Atomx с Vocarb 3000, соединенная с газовым хроматографом Thermo Trace и масс-спектрометром DSQII с газом-носителем сверхчистой чистоты (гелий). 20 мл образца продували непосредственно в режиме загрязнения на концентраторе продувки и ловушки Atomx, а затем вводили в пленочную колонку J&W DB-VRX 20 м × 0,18 мм × 1,0 мкм в режиме разделения (60: 1). Программа печи была такой же, как описано выше для испытания 1. Thermo DSQII (MSD) работал в режиме полного сканирования (диапазон масс 34–350).Целевые аналиты были количественно определены с использованием экстрагированного иона и подтверждены с использованием времени удерживания. Соотношение подтверждающих ионов и концентраций определяли с помощью внешней калибровки с использованием суррогатных стандартов. Предел обнаружения для анализа с продувкой и ловушкой составлял приблизительно 1,25 нг / мл.

Вся стеклянная посуда была очищена и запечена при 250 ° C в течение 12 часов перед использованием. Лабораторные заготовки готовили для каждой матрицы образца (например, горячей воды, кофе и бульона) с использованием чистого стеклянного стакана и без продукта из полистирола.Целевые аналиты, обнаруженные в лабораторных пробах, не вычитались из концентраций, обнаруженных во всех образцах. См. Таблицы S1 и S2, где указаны концентрации всех целевых аналитов в лабораторных бланках испытаний 2 и 3, соответственно. Концентрации в лабораторных пробах для Испытания 1 не указаны, потому что все образцы были ниже предела обнаружения. Заготовки матрицы с добавками также были извлечены и проанализированы с каждой последовательностью образцов для определения восстановления. В холостых пробах с добавленными матрицами извлечение семи целевых аналитов составляло от 29 до 120% для всех матриц для ГХ-МС и 67–154% для всех матриц для продувки и улавливания с помощью ГХ-МС (см. Таблицы S3 – S5 для подробные восстановления).

Испытания на токсичность фильтрата с использованием

C. dubia

Тестирование проводилось в соответствии со стандартным методом оценки выживания и размножения пресноводных кладоцеровых C. dubia в соответствии со стандартным методом «Environment Canada and Climate Change» (EPS 1 / RM / 21; ECCC, 2007). Тестовые растворы включали разные концентрации этилбензола и фильтрата из тех же чашек из пенополистирола, которые использовались в экспериментах по выщелачиванию, описанных выше.

Этилбензол был приобретен у BDH Ltd. (чистота 99%) и использовался для приготовления исходных растворов.Исходные растворы для чашек из пенополистирола готовили путем помещения 20 разорванных чашек в 5 л лабораторной воды для разбавления (дехлорированная водопроводная вода города Торонто) в кастрюлю из нержавеющей стали и кипячения в течение 30 мин. Фильтрат готовили в день 0 (начало испытания) и хранили в бутылях из желтого стекла с минимальным свободным пространством для использования при подменах воды в каждый день испытаний на токсичность. Исходные растворы этилбензола готовили каждый день теста путем добавления 6 мкл в 1 л воды для лабораторных разбавлений и использовали для разбавлений для получения тестовых концентраций.Поскольку растворимость этилбензола в воде составляет 0,015 г / 100 мл (20 ° C), растворитель-носитель не использовался. Исходные растворы хранили в стеклянных флаконах с минимальным свободным пространством и использовали для разбавлений для получения тестовых концентраций. Номинальные испытательные концентрации этилбензола включали 5,2, 2,6, 1,3, 0,7, 0,32, 0,16 и 0,08 мг / л. Для раствора этилбензола 5,2 мг / л и фильтрата из чашки EPS фактические концентрации были измерены в растворе в начале (день 0) и в день 8, используя те же методы, что и выше для продуктов выщелачивания в испытаниях 2 и 3 (i.е., используя продувку и ловушку с ГХ-МС), за исключением водного режима с продувкой 10 мл. Поскольку этот метод немного более чувствителен, предел обнаружения составляет 0,2 мкг / л. На 8-й день растворы измеряли в начале и в конце 24-часового периода (т. Е. Для измерения уменьшившейся концентрации). Измеренные концентрации этилбензола в исходном растворе 5,2 мг / л составляли 2,3 мг / л в день 0 и 4,8 мг / л в день 8. Мы отмечаем, что концентрация в день 0 была намного ниже, чем ожидалось. Только в этот день потребовалось несколько часов, прежде чем подопытных животных погрузили в раствор.Во все остальные дни это занимало всего несколько минут. Поскольку концентрация, измеренная на 8-й день, была той, которую мы ожидали, мы вполне уверены, что концентрации воздействия в тесте на токсичность были аналогичны тем, которые мы ожидали во все другие дни процедуры. Измеренная концентрация разложившегося раствора составляла 0,2 мг / л, распадаясь на 96% за 24-часовой период между обновлением тестового раствора. Вероятно, это связано с летучестью этилбензола, что помогает объяснить более низкую концентрацию исходного раствора в день 0.Измеренные концентрации в фильтрате из чашки EPS были постоянно ниже предела обнаружения для толуола, мета- и пара-ксилола, изопропилбензола и изопропилтолуола. Для стирола концентрации в исходном растворе составляли 0,6 мкг / л в день 0 и 0,8 мкг / л в день 8. Измеренная концентрация стирола в разложившемся растворе была ниже уровня обнаружения. Для бензола концентрации составляли 0,2 мкг / л (на пределе обнаружения) на 0 день и ниже предела обнаружения на 8 день. Измеренная концентрация бензола в разложившемся растворе также была ниже предела обнаружения.Для этилбензола концентрации составляли 2,4 мкг / л в день 0 и 2,1 мкг / л в день 8. Измеренная концентрация этилбензола в разложившемся растворе была ниже предела обнаружения.

C. dubia представляли собой единый генетический фонд, выращенный в Министерстве окружающей среды и изменения климата Онтарио. C. dubia культивировали при температуре 25 ± 2 ° C и фотопериоде 16 часов света / 8 часов темноты. Людей кормят ежедневно 0,5 мл одноклеточных зеленых водорослей (Pseudokirchneriella subcapitata) и 0 мл.01 мл YCT (смесь дрожжей / церофилла / форели) (ECCC, 2007). Организмы, использованные для тестирования, соответствовали критериям здоровья культуры (отсутствие эфипии), смертность расплода не превышала 20%, и в течение 7 дней до начала теста были получены выводки по крайней мере из 15 новорожденных на самку. Вода, используемая для культивирования и тестирования, представляла собой водопроводную воду города Торонто, дехлорированную слоями активированного угля, с добавлением селена (3 мкг / л) (Winner, 1989).

Для каждой из девяти обработок (т.е. семи концентраций этилбензола, выщелачивания из чашки EPS и отрицательного контроля) было десять повторов ( n = 10).Животных подвергали воздействию в течение 8 дней. Каждая отдельная повторность состояла из тестового объема 15 мл и одной самки дафнии. Решения обновлялись ежедневно. C. dubia кормили ежедневно во время теста, соблюдая ту же диету и рацион, что и выше. Параметры качества воды pH, проводимость, растворенный кислород (DO) и температура измерялись ежедневно. Во всех вариантах обработки, кроме выщелачивания EPS, pH составлял от 8,2 до 8,5, проводимость от 270 до 353 мкСм / см, DO от 7,6 до 9 мг / л и температура от 21.От 5 до 22,8 ° C. В фильтрате выщелачивания EPS pH составлял от 8,1 до 9,9, проводимость от 229 до 305 мкСм / см, DO от 4,6 до 8,5 мг / л и температура от 21,7 до 22,6 ° C. Животных акклиматизировали к экспериментальной системе в течение 24 часов перед началом эксперимента. Ежедневно регистрировали смертность отдельных дафний в первом поколении и количество живых новорожденных, рожденных каждый день. В целом измеряли смертность, общий размер выводка на особь и время появления первого выводка. Чтобы тест был действительным, нам требовалось 80% выживаемости и не менее 15 детенышей на самку в среднем для контрольных животных в течение 8-дневного периода тестирования.

Результаты испытаний были проанализированы статистически для определения LC50 и LC20 для этилбензола и для проверки гипотезы о том, что этилбензол и чашечный фильтрат EPS изменят общий размер расплода. Значения LC50 и LC20 и их 95% доверительный интервал были определены с использованием метода пробит-анализа и рассчитаны с помощью калькулятора пробит-анализа, разработанного доктором Альфа Раджем (Finney, 1952). Используя GMAV (EICC, Сиднейский университет), однофакторный дисперсионный анализ ANOVA проверял различия в общем размере расплода при обработке этилбензолом ( n = 10, α = 0.05) с использованием фиксированного фактора (восемь уровней: 5,2, 2,6, 1,3, 0,7, 0,32, 0,16, 0,08 и 0 мг / л). Мы заверили, что наши данные нормально распределены через гистограммы. Мы не проводили статистические тесты на нормальность, потому что ANOVA не очень чувствительны к умеренным отклонениям от нормальности (Underwood, 1997). C-тест Кохрана (1951) показал однородность дисперсий (α = 0,05). Двухсторонний тест равных отклонений t проанализировал различия в общем размере расплода между контролем и обработкой выщелачиванием чашки EPS ( n = 10, α = 0.05) с помощью SYSTAT 12 (SYSTAT Software, Чикаго, Иллинойс).

Результаты

Продукты выщелачивания из изделий из полистирола

Для экспериментов по выщелачиванию в Испытании 1 (Таблица 1) все продукты подвергались воздействию пищевых матриц при 70 ° C без крышки в течение 30 минут. После экспериментов по выщелачиванию все матрицы анализировали с помощью газовой хроматографии-масс-спектрометрии. Для всех семи целевых аналитов концентрации были ниже предела обнаружения (25 мкг / л). Поскольку этот предел обнаружения относительно высок, мы решили повторить эксперименты и проанализировать фильтрат с помощью более чувствительного прибора с более низким пределом обнаружения (1.25 мкг / л).

Для экспериментов по выщелачиванию в Испытаниях 2 и 3 (Таблица 1) мы проанализировали все образцы, используя продувку и ловушку с помощью ГХ-МС. Эксперименты в Испытании 2 проводились без репликации, чтобы увидеть, может ли быть обнаружен какой-либо из целевых аналитов. Из-за чувствительности этого инструмента мы исключили образцы со сливками или соусом (т.е. с относительно высоким содержанием липидов), чтобы не допустить чрезмерного загрязнения инструмента. Помимо обработки каждого продукта из полистирола с кофе или суповым бульоном при температуре 70 ° C, мы включили два образца с суповым бульоном при более высокой температуре в чашу из пенополистирола.Один образец нагревали в микроволновой печи в чаше из пенополистирола в течение 3 минут при температуре 95 ° C и оставляли на 27 минут. Другой кипятили до 95 ° C, горячий бульон выливали в чашу из пенополистирола и оставляли на 30 минут. Во всех пробах, обработанных при 70 ° C, все целевые аналиты были ниже предела обнаружения или на следовых уровнях, которые были аналогичны концентрации в холостом опыте (см. Таблицу S1 для всех данных из Испытания 2). Для двух образцов, прогонированных при 95 ° C, этилбензол был единственным целевым аналитом, превышающим предел обнаружения, и он не был обнаружен в холостых пробах.Концентрации этилбензола были одинаковыми в двух горячих образцах: 3,2 мкг / л в чаше из пенополистирола, обработанной в микроволновой печи, и 3,4 мкг / л в чаше из пенополистирола, не используемой в микроволновой печи. Это говорит о том, что более высокая температура является причиной более высоких концентраций этилбензола в фильтрате.

Испытание 3 было проведено для повторения нашего испытания в Испытании 2 с повторением ( n = 3) и для проведения всех испытаний по выщелачиванию при более высокой температуре -95 ° C (Таблица 1). Все те же обработки в Испытании 2, за исключением чаши из EPS, нагретой в микроволновой печи, были воспроизведены в Испытании 3 при 95 ° C.Кроме того, мы добавили еще одну обработку EPS в воде, поддерживаемой при 95 ° C в течение полных 30 минут, путем кипячения на горячей плите. Для этой обработки одну чашку из EPS на реплику разорвали на части и поместили в колбу с кипящей водой на полные 30 мин. Опять же, некоторые целевые аналиты были обнаружены на следовых уровнях в некоторых образцах, но были аналогичны концентрации в холостом опыте (см. Таблицу S2 для всех данных из Испытания 3). Как и в опыте 2, этилбензол был единственным целевым аналитом, который превышал предел обнаружения и не обнаруживался в холостых пробах.Этилбензол был обнаружен во всех трех повторностях кипящей воды с EPS в концентрациях 1,5, 1,6 и 1,5 мкг / л, кофе с EPS в 1,3, 1,4 и 1,4 мкг / л и бульона с EPS в концентрациях 1,6, 1,8, и 2,6 мкг / л. В целом, EPS выщелачивает больше, чем другие протестированные полистирольные продукты, а суповой бульон вызывает большее выщелачивание, чем горячий кофе или вода.

Токсичность в

C. dubia

При всех обработках не было явной кривой ответа. Это может быть связано с высокой летучестью этилбензола.Более высокие концентрации не всегда приводили к большему отклику. Общая смертность колебалась от 10 до 70% (таблица 2; данные о смертности см. В таблице S6). Не было разницы в смертности между контролем и двумя самыми низкими концентрациями этилбензола (0,16 и 0,08 мг / л), при этом смертность всех трех составляла 10%. Одна обработка этилбензолом, 0,65 мг / л, привела к 20% летальности. Смертность в фильтрате из чашки EPS и в обработках этилбензолом 0,325, 1,3 и 5,2 мг / л составила 40% смертности — в четыре раза больше, чем в контроле, и в два раза выше критериев приемлемости в этом хроническом тесте.Самая высокая смертность была при обработке этилбензолом 2,6 мг / л, при 70% смертности. Для этилбензола расчетная ЛК50 составляла 14 мг / л (95% доверительный интервал 3,5–61 мг / л), а расчетная ЛК20 составляла 0,21 мг / л (95% доверительный интервал 0,05–0,9 мг / л).

Таблица 2 . Данные по хронической токсичности этилбензола и фильтрата ЭПС в C. dubia .

Для всех обработок среднее время появления первого выводка варьировалось от 4,2 до 5,9 дней (Таблица 2; все репродуктивные данные см. В Таблице S7).Время появления первого выводка составляло от 4,2 до 4,9 дня для всех обработок, за исключением обработок фильтрата 0,325 мг / л и чашки EPS. Для этих двух обработок время появления первого выводка составило 5,7 ± 1,4 и 5,9 ± 1,2 дня соответственно — примерно на целый день позже контрольной обработки (4,8 ± 1 день).

По всем обработкам средний общий размер выводка составлял от 5 до 15 потомков. Для общего числа потомков не было существенной разницы между обработками этилбензолом ( p = 0,17; Рисунок 1).Наблюдалась значительная разница в общем количестве потомков между фильтратом из чашки EPS и контрольной обработкой ( p = 0,01), при этом общий размер выводка C. dubia , подвергшийся воздействию фильтрата чашки EPS, был значительно меньше, чем C. .. dubia в контрольной обработке (рис. 2). Общий средний размер выводка для C. dubia при контрольной обработке составлял 15 ± 9 потомков, тогда как общий средний размер выводка для C. dubia при обработке фильтрата из чашки EPS составлял 5 ± 5 потомков.

Рисунок 1 . Общий размер выводка C. dubia , подвергнутых воздействию различных концентраций этилбензола и отрицательного контроля. График в виде прямоугольников и усов отображает пятизначную сводку данных об общем размере выводка для каждой обработки этилбензолом от самой низкой до самой высокой концентрации (мг / л) с отрицательным контролем справа. Полоса в середине каждого прямоугольника представляет собой медианное значение, верх и низ прямоугольника — нижний и верхний квартили (25 и 75%), а усы — минимальное и максимальное значения.

Рисунок 2 . Общий размер выводка C. dubia , подвергнутых выщелачиванию из чашки EPS и отрицательному контролю. Каждая полоса представляет собой средний общий размер выводка каждой обработки, а столбцы ошибок представляют собой стандартное отклонение.

Обсуждение

Здесь мы проверили, выщелачивают ли продукты из полистирола химические вещества в матрицы продуктов питания и напитков при реалистичных сценариях воздействия и приводят ли их выщелачивание к токсичности для пресноводного зоопланктона.

Низкие уровни выщелачивания летучих соединений из продуктов из полистирола во время использования

Мы обнаружили химические продукты выщелачивания только в ходе испытаний, проведенных при 95 ° C, и единственным химическим веществом, которое было достоверно обнаружено в продуктах выщелачивания, был этилбензол. Этилбензол присутствовал в концентрациях от 1,3 до 3,4 мкг / л. При испытаниях по выщелачиванию самые высокие концентрации были в суповом бульоне. В целом это говорит о том, что температура оказывает значительное влияние на количество химических веществ, выщелачиваемых из полистирольных продуктов, и эта тенденция была продемонстрирована в других исследованиях (Tawfik and Huyghebaert, 1998; Ahmad and Bajahlan, 2007; Sanagi et al., 2008). Это также предполагает, что матрицы с липидами (бульон из куриного супа) вызывают большее вымывание или лучше удерживают летучие продукты выщелачивания, чем матрицы без липидов (вода и кофе). Эта тенденция также была обнаружена в предыдущем исследовании (Tawfik and Huyghebaert, 1998). Кроме того, наши результаты показывают, что пенополистирол выщелачивает больше, чем продукты из невспененного полистирола, такие как столовые приборы из полистирола и крышки для кофейных чашек.

Здесь мы стремились провести эксперименты по выщелачиванию в сценариях, которые реалистичны для того, как каждый продукт используется для еды и питья.Температуры, использованные в этом исследовании, варьировались от 70 до 95 ° C (Brown and Diller, 2008), и продукты не подвергались воздействию фильтрата более 30 минут. В этих условиях концентрации фильтрата для стирола и этилбензола были ниже пределов, принятых ВОЗ: 20 частей на миллиард для стирола и 300 частей на миллиард для этилбензола (Всемирная организация здравоохранения, 2004). Концентрации этилбензола в наших экспериментах были на два порядка ниже предела, признанного приемлемым Всемирной организацией здравоохранения (2004 г.).Другие исследования, в которых используются реалистичные условия выщелачивания, обнаружили концентрации, которые действительно вызывают опасения для здоровья человека. Sanagi et al. (2008) обнаружили концентрации стирола в диапазоне от 45 до 293 частей на миллиард в воде при условиях выщелачивания при 24–80 ° C в течение 30 минут в чашке из полистирола. Tawfik и Huyghebaert (1998) обнаружили концентрацию стирола 24 частей на миллиард в цельном молоке при температуре 40 ° C в течение 24 часов и в мороженом при температуре -10 ° C в течение 30 дней в полистирольных стаканчиках.

В этом исследовании мы нацелены на ряд летучих химикатов, связь которых с полистиролом и / или EPS в предыдущих исследованиях была подтверждена.Как и в случае любого химического анализа, в этих полистирольных продуктах могут присутствовать другие химические вещества, которые мы не исследовали. Например, Rani et al. (2014) обнаружили антипирены в продуктах из полистирола в концентрациях от 24 до 199 нг / г (Rani et al., 2014).

Токсичность фильтрата из пищевых контейнеров из пенополистирола

Поскольку этилбензол был единственным химическим веществом, которое было обнаружено в количественных количествах в наших экспериментах по выщелачиванию, мы сосредоточили внимание на этилбензоле в наших тестах на токсичность.Кроме того, поскольку казалось, что пенополистирол выщелачивает больше, чем другие продукты, мы включили обработку, которая состояла из всего фильтрата из стакана из пенополистирола. Эта обработка была включена, чтобы определить, может ли быть какая-либо токсичность из-за химических веществ, которые мы не выбрали для анализа.

Для тестов на токсичность с использованием нескольких концентраций этилбензола более высокие концентрации не всегда приводили к более сильным эффектам (таблица 2). Это могло быть связано с тем, что этилбензол является летучим химическим веществом, и поэтому концентрации во флаконах варьировались в зависимости от наблюдаемых нами быстрых скоростей распада.Здесь расчетная LC50 составляла 14 мг / л, а расчетная LC20 составляла 210 мкг / л. Эти концентрации на несколько порядков превышают этилбензол, измеренные в наших испытаниях по выщелачиванию. Мы также не наблюдали значительных различий в репродуктивной продукции среди всех обработок этилбензолом. Эти результаты позволяют предположить, что продукты выщелачивания из всех наших испытаний по выщелачиванию не токсичны. Однако результаты лечения чашкой из пенополистирола свидетельствуют об обратном.

Смертность, наблюдаемая при обработке с выщелачиванием из чашки EPS, составила 40%, что в четыре раза больше, чем в отрицательном контроле.Более того, время появления первого выводка было более чем на 1 день позже, чем в контроле, и мы наблюдали значительное снижение репродуктивной продукции. Средний общий выводок при обработке EPS был в три раза меньше, чем в контроле. Такие репродуктивные эффекты могут привести к эффектам на уровне популяции. Аналогичные эффекты, демонстрирующие снижение воспроизводства у устриц (Sussarellu et al., 2016) и морских видов зоопланктона (Cole et al., 2015), подверженных воздействию полистирола, также наблюдались.

Хотя мы наблюдали значительную токсичность у C. dubia , которые подвергались воздействию выщелачивания EPS, мы не знаем, что привело к наблюдаемым эффектам. Одно из возможных объяснений — это высокий pH, измеренный в исследуемом растворе в различные моменты времени. Другое возможное объяснение — химическое вещество или комбинация химикатов, на которые мы не нацелены в наших анализах. Наши результаты подчеркивают важность измерения токсичности всего образца по сравнению с простым измерением токсичности по одному целевому химическому веществу за раз.Весь образец дает более целостное представление о том, какие типы эффектов мы можем наблюдать в реальном мире. Будущие исследования должны быть нацелены на проведение тестов на токсичность всего фильтрата с использованием большего количества продуктов, при различных сценариях и измерения более разнообразных эффектов. Различные сценарии могут включать сравнение фильтрата при разных температурах и в морской и пресной воде.

Последствия для политики

При планировании законодательства необходимо учитывать множество факторов, и все они должны быть подкреплены научными данными.Важно учитывать последствия для здоровья человека, дикой природы и устойчивости. Здесь мы сосредоточились на последствиях для здоровья человека путем измерения выщелачивания и последствий для дикой природы путем измерения токсичности для пресноводных беспозвоночных. Что касается здоровья человека, результаты наших экспериментов по выщелачиванию не предполагают, что полистирол небезопасен для человека. Однако наши результаты противоречат результатам других исследований, в которых содержание химических продуктов выщелачивания действительно превышает безопасные пределы (Tawfik and Huyghebaert, 1998; Sanagi et al., 2008). Таким образом, необходимо больше доказательств. В отношении дикой природы наши и другие результаты (Cole et al., 2015; Sussarellu et al., 2016) предполагают, что увеличение накопления полистирола в морской и пресноводной среде может привести к эффектам на уровне популяции у видов беспозвоночных. Что касается устойчивости, данные должны собираться от колыбели до могилы, чтобы определить, как показатели устойчивости для полистирола и пенополистирола сравниваются с другими типами материалов.

Авторские взносы

CR, CT и RR разработали эксперименты по выщелачиванию.CR, DP и KS разработали эксперименты на токсичность. КТ провела эксперименты по выщелачиванию. KS, DP и HD провели эксперименты на токсичность. Химический анализ проводился и анализировался RR, CT, JD и GS. Данные были статистически проанализированы CR. Первоначальный черновик рукописи был написан CR и CT. Все авторы участвовали во всех проектах рукописи.

Заявление о конфликте интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Благодарности

Грант от 5Gyres поддержал эту работу. Сертификат NSERC USRA был присужден CT и Дону Джексону во время эксперимента. Мы благодарим Xianming Zhang за помощь в проведении химического анализа, а также E. Reiner и P. Helm за советы относительно дизайна эксперимента, все из Министерства окружающей среды и изменения климата Онтарио. Благодарим Э. Го за помощь в лаборатории.

Дополнительные материалы

Дополнительные материалы к этой статье можно найти в Интернете по адресу: https: // www.frontiersin.org/articles/10.3389/fmars.2018.00071/full#supplementary-material

Список литературы

Ахмад М. и Баджахлан А. С. (2007). Выщелачивание стирола и других ароматических соединений в питьевой воде из бутылок из полистирола. J. Environ. Sci . 19, 421–426. DOI: 10.1016 / S1001-0742 (07) 60070-9

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Аль-Одаини, Н. А., Шим, В. Дж., Хан, Г. М., Янг, М., и Хонг, С. Х. (2015). Обогащение гексабромциклододеканом прибрежных отложений вблизи аквакультуры и очистных сооружений в полузамкнутом заливе в Южной Корее. Sci. Tot. Окружающая среда . 505, 290–298. DOI: 10.1016 / j.scitotenv.2014.10.019

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Андерсен, М. Э., Крузан, Г., Блэк, М. Б., Пендсе, С. Н., Додд, Д., Бас, Дж. С. и др. (2017). Оценка молекулярных инициирующих событий (MIEs), ключевых событий (KEs) и модулирующих факторов (MFs) для стирольных реакций в легких мышей с использованием профилей экспрессии полногеномных генов после однодневных и многонедельных воздействий. Toxicol. Прил.Pharmacol. 335, 28–40. DOI: 10.1016 / j.taap.2017.09.015

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Бейгарн, С., Маклауд, М., Богдал, К., и Брейтхольц, М. (2015). Токсичность фильтрата от выветривания пластмасс: предварительное скрининговое исследование с использованием Nitocra spinipes. Химия 132, 114–119. DOI: 10.1016 / j.chemosphere.2015.03.010

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Бесселинг, Э., Вегнер, А., Фоекема, Э. М., ван ден Хевель-Грев, М. Дж., И Кельманс, А. А. (2012). Влияние микропластика на приспособленность и биоаккумуляцию ПХБ бородавчатым червем Arenicola marina (L.). Environ. Sci. Technol. 47, 593–600. DOI: 10.1021 / es302763x

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Бургер, К. М., Латтин, Г. Л., Мур, С. Л., и Мур, К. Дж. (2010). Проглатывание пластика планктонными рыбами в Центральном круговороте северной части Тихого океана. мар.Загрязнение. Бык. 60, 2275–2278. DOI: 10.1016 / j.marpolbul.2010.08.007

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Боррелл С. Б., Рохман К. М., Либуарон М., Бонд А. Л., Люшер А., Брэдшоу Х. и др. (2017). Мнение: зачем нам международное соглашение о загрязнении морской среды пластиком. Proc. Natl. Акад. Sci. США . 114, 9994–9997. DOI: 10.1073 / pnas.1714450114

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Браво, М., де лос Анхелес Гальярдо, М., Луна-Хоркера, Г., Нуньес, П., Васкес, Н., и Тиль, М. (2009). Антропогенный мусор на пляжах в юго-восточной части Тихого океана (Чили): результаты национального исследования при поддержке добровольцев. Март Загрязнение. Бык . 58, 1718–1726. DOI: 10.1016 / j.marpolbul.2009.06.017

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Браун, М. А., Чепмен, М. Г., Томпсон, Р. К., Амарал Зеттлер, Л. А., Джамбек, Дж., И Маллос, Н. Дж. (2015). Пространственные и временные модели выброшенных на берег морских отбросов в приливной зоне: есть ли картина глобальных изменений? Environ.Sci. Технол . 49, 7082–7094. DOI: 10.1021 / es5060572

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Коул, М., Линдек, П., Филман, Э., Холсбанд, К., и Галлоуэй, Т. С. (2015). Влияние микропластиков из полистирола на питание, функцию и плодовитость морской копеподы Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137. DOI: 10.1021 / es504525u

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Конвей, П., Барнс, Д., Мортон, А. (2002). Накопление мусора на берегах океанических островов дуги Скотия в Антарктиде. Полярный Биол . 25, 612–617. DOI: 10.1007 / s00300-002-0391-x

CrossRef Полный текст | Google Scholar

Кушман, Дж. Р., Раусина, Г. А., Крузан, Г., Гилберт, Дж., Уильямс, Э. и Харрасс, М. К. (1997). Оценка опасности экотоксичности стирола. Экотокс. Environ. Saf. 37, 173–180. DOI: 10.1006 / eesa.1997.1540

PubMed Аннотация | CrossRef Полный текст | Google Scholar

ECCC (2007). Биологический метод испытаний: испытание воспроизводства и выживаемости с использованием кладоцера Ceriodaphnia dubia. Отчет EPS / RM / 21, 2-е издание. ECCC.

Эриксон, Б. Э. (2011). Формальдегид, предупреждение рака стирола. Chem. Англ. Новости 89:11. DOI: 10.1021 / cen-v089n025.p011

CrossRef Полный текст

Эриксен, М., Мейсон, С., Уилсон, С., Бокс, К., Зеллерс, А., Эдвардс, В. и др. (2013). Загрязнение микропластиком поверхностных вод Великих Лаврентийских озер. Март Загрязнение. Бык . 77, 177–182. DOI: 10.1016 / j.marpolbul.2013.10.007

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Финни, Д. Дж. (1952). Пробит-анализ, 2-е изд. Кембридж, Великобритания: Издательство Кембриджского университета.

Гаррити, С. Д., и Левингс, С. К. (1993). Морской мусор вдоль Карибского побережья Панамы. Март Загрязнение. Бык . 26, 317–324. DOI: 10.1016 / 0025-326X (93)

-4

CrossRef Полный текст | Google Scholar

Янг, М., Шим, В. Дж., Хан, Г. М., Рани, М., Сонг, Ю. К., и Хонг, С. Х. (2016). Обломки пенополистирола как источник опасных добавок для морских организмов. Environ. Sci. Technol. 50, 4951–4960. DOI: 10.1021 / acs.est.5b05485

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Янг, М., Шим, В. Дж., Хан, Г. М., Рани, М., Сонг, Ю. К., и Хонг, С. Х. (2017). Широко распространенное обнаружение бромированного антипирена, гексабромциклододекана, в морском мусоре и микропластиках из вспененного полистирола из Южной Кореи и прибрежных регионов Азиатско-Тихоокеанского региона. Environ. Загрязнение. 231, 785–794. DOI: 10.1016 / j.envpol.2017.08.066

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Келлер, А. А., Фру, Э. Л., Джонсон, М. М., Саймон, В., и МакГурти, К. (2010). Распределение и численность антропогенного морского мусора вдоль шельфа и склона западного побережья США. Март Загрязнение. Бык . 60, 692–700. DOI: 10.1016 / j.marpolbul.2009.12.006

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Кершоу, П.Дж. И Рохман К. М. (2015). Источники, судьба и влияние микропластиков в морской среде: часть 2 глобальной оценки . Отчеты и исследования-ИМО / ФАО / ЮНЕСКО-МОК / ВМО / МАГАТЭ / Объединенная группа экспертов ООН / ЮНЕП по научным аспектам защиты морской среды (GESAMP) англ. 93.

Google Scholar

Квон, Б. Г., Амамия, К., Сато, Х., Чунг, С. Ю., Кодера, Ю., Ким, С. К. и др. (2017). Мониторинг олигомеров стирола как индикатора загрязнения полистирола пластмассой в северо-западной части Тихого океана. Химия 180, 500–505. DOI: 10.1016 / j.chemosphere.2017.04.060

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Квон, Б. Г., Коидзуми, К., Чунг, С. Ю., Кодера, Ю., Ким, Дж. О., и Сайдо, К. (2015). Глобальный мониторинг олигомеров стирола как нового химического загрязнения в результате загрязнения морской среды полистиролом. J. Hazard. Матер. 300, 359–367. DOI: 10.1016 / j.jhazmat.2015.07.039

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ли, Дж., Hong, S., Song, Y.K, Hong, S.H., Jang, Y.C., Jang, M., et al. (2013). Соотношения между обилием пластикового мусора разного размера на пляжах Южной Кореи. Март Загрязнение. Бык . 77, 349–354. DOI: 10.1016 / j.marpolbul.2013.08.013

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Литнер Д., Ларссон А. и Дэйв Г. (2011). Ранжирование и оценка опасности для окружающей среды и здоровья пластиковых полимеров по химическому составу. Sci. Всего Окружающая среда . 409, 3309–3324. DOI: 10.1016 / j.scitotenv.2011.04.038

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Лёр, А., Савелли, Х., Бунен, Р., Кальц, М., Рагас, А., и Ван Беллегхем, Ф. (2017). Решения для глобального загрязнения морского мусора. Curr. Opin. Environ. Суст . 28, 90–99. DOI: 10.1016 / j.cosust.2017.08.009

CrossRef Полный текст | Google Scholar

Море-Фергюсон, С., Лоу, К. Л., Проскуровски, Г., Мерфи, Э. К., Пикок, Э. Э. и Редди, К. М. (2010). Размер, масса и состав пластикового мусора в западной части Северной Атлантики. Март Загрязнение. Бык . 60, 1873–1878. DOI: 10.1016 / j.marpolbul.2010.07.020

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Niaz, K., Hassan, F. I., Mabqool, F., Khan, F., Momtaz, S., Baeeri, M., et al. (2017). Влияние воздействия стирола на параметры плазмы, молекулярные механизмы и экспрессию генов в островковых клетках модели крысы. Environ. Toxicol. Pharmacol. 54, 62–73. DOI: 10.1016 / j.etap.2017.06.020

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Рани, М., Шим, В. Дж., Хан, Г. М., Джанг, М., Аль-Одаини, Н. А., Сонг, Ю. К. и др. (2015). Качественный анализ добавок в пластиковый морской мусор и его новые продукты. Arch. Environ. Против. Токсикол . 69, 352–366. DOI: 10.1007 / s00244-015-0224-x

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Рани, М., Шим, В. Дж., Хан, Г. М., Джанг, М., Сонг, Ю. К., и Хонг, С. Х. (2014). Гексабромциклододекан в потребительских товарах на основе полистирола: свидетельство нерегулируемого использования. Химия 110, 111–119. DOI: 10.1016 / j.chemosphere.2014.02.022

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Санаги, М. М., Линг, С. Л., Насир, З., Ибрагим, В. А. У., и Абу Наим, А. (2008). Определение остаточных летучих органических соединений, мигрировавших из упаковки пищевых продуктов из полистирола в имитатор пищевых продуктов, методом твердофазной микроэкстракции с газовой хроматографией в свободном пространстве. Malays. J. Anal. Sci. 12, 542–551.

Google Scholar

Шайлер, К., Хардести, Б. Д., Уилкокс, К., и Таунсенд, К. (2014). Глобальный анализ антропогенного попадания мусора морскими черепахами. Conser. Биол . 28, 129–139. DOI: 10.1111 / cobi.12126

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E., et al. (2016). На воспроизводство устриц влияет воздействие микропластиков из полистирола. Proc. Natl. Акад. Sci. США . 113, 2430–2435. DOI: 10.1073 / pnas.151