диаметр, какую арматуру использовать, через сколько рядов.
При адекватной стоимости газобетонные блоки обладают отменными теплоизоляционными свойствами, легко монтируются и поддаются ручной обработке. Однако из достоинств поризованного бетона проистекают и недостатки. В частности, это слабая устойчивость к изгибающим нагрузкам, из-за которой в результате естественной осадки фундамента на кладке стен появляются трещины. Армирование газобетона арматурой помогает избежать этого — а отнюдь не компенсирует низкую прочность, как ошибочно думают многие.
Рассмотрим все нюансы усиления кладки и разберёмся, какую арматуру использовать для газобетонных блоков.
Армирование газоблока арматурой сводит к минимуму риск образования в кладке трещин — и это главная причина, по которой оно применяется. Такая операция не является обязательной и одинаковой для всех объектов, целесообразность её выполнения оценивается в каждом конкретном случае.
- Чаще всего проекты предусматривают усиление зон, на которые опираются перемычки, перекрытия и стропильная система.
- Для опоры стропил и плитных перекрытий обычно устраивается кольцевая монолитная балка с внутренним каркасом. Она охватывает все стены по периметру, включая и фронтоны, поэтому конструкцию и называют поясом.
- Дополнительного усиления требуют и подоконные зоны – здесь укладка арматуры в газобетонные блоки производится в нарезанные заранее в горизонтальной поверхности кладки штрабы.
- Армирование остальных зон стены может быть необязательной, а целесообразность его применения должна быть доказанной.
Виталий Кудряшов
строитель, начинающий автор
На заметку: В некоторых случаях выполняется вертикальное армирование – например, когда строительство ведётся в сейсмически неустойчивом регионе. Тогда через определённые промежутки в кладке, с помощью блоков со сквозными пустотами, устраивают вертикальные каналы. В них устанавливают стальные стержни диаметром 12-14 мм, а затем заливают обычным тяжёлым бетоном. Точно так же поступают и при выкладке колонн.
Расчет арматуры для армирования газобетона выполняется на основании размера сечения кладки. Минимальная площадь применяемых стержней составляет 0,02% от площади рабочей поверхности кладки.
Например, армировка газоблока 300 мм производится арматурой сечением 7,5 мм². Обеспечить это могут два продольно уложенных стержня диаметром 8 (класс АIII). Когда нет возможности осуществления двухрядного армирования, усиление можно сделать в один ряд. Просто диаметр арматуры для армирования газобетона в этом случае должен быть больше – 10АIII.
В монолитных поясах под перекрытием, особенно при строительстве на слабых грунтах, нужно использовать арматуру 12АIII. Там, где опираются ж/б плиты, она закладывается в бетонную подушку.
Именно для того и существует проект, чтобы застройщику ничего не приходилось додумывать. В нём указываются все места, в которых конструктивное армирование необходимо. Однако случается и такое, что в проекте информация об армировке отсутствует – ошибки ведь не исключены. К тому же многие частные застройщики возводят свои дома и вовсе без проекта.
В любом случае необходимо знать, где конструктивное армирование обязательно:
- Армирование первого ряда газобетона арматурой — по всей ширине пролёта стены.
- Уровень опирания перекрытий и кровли – здесь сооружается обвязочный пояс по периметрам всех стен.
- Подоконные зоны. Важно чтобы пруты были заведены в толщу простенков не меньше чем на 60 см от вертикального обреза кладки.
- Точки опоры перемычек: армировка газоблока арматурой производится в швах под последним рядом, на ширину не менее 50 см с каждой стороны проёма.
- Над проёмом, если он устроен без перемычек. Это допустимо, когда расстояние от верха проёма до перекрытия составляет менее 2/3 ширины проёма. В этом случае, армирование газобетонной кладки арматурой производится в двух последующих за проёмом рядах.
- Все случаи, когда высота кладки между перекрытиями составляет больше 3-х метров.
- Когда длина стены превышает 6 метров, её усиление производится в каждом четвёртом ряду.
Теперь более подробно рассмотрим, какую арматуру использовать для армирования газоблока.
До сих пор мы вели речь только про армирование газобетонных блоков стальной стержневой арматурой. Тем не менее, для этой цели могут использоваться и другие материалы – например, сетка из той же стали или базальтопластика, металлическая перфолента, стеклопластиковые стержни. Они также обладают рядом преимуществ, поэтому предлагаем для ознакомления краткий экскурс по каждому варианту отдельно.
Все виды сеток, используемых для армирования газобетонных блоков и других видов каменных материалов, изготавливаются по российскому стандарту Р 57265 — он же европейский EN 846. Сетки применяются только для усиления горизонтальных швов, а так же при нанесении штукатурного слоя при отделке. Сетки могут применяться и в качестве связи с облицовочной кирпичной стенкой.
Стальную сетку классифицируют по диаметру используемой для сваривания проволоки или стержней. Сетчатая арматура для газобетонных блоков может изготавливаться не только из стальной оцинкованной проволоки, но и из предварительно покрытой цинком стальной полосы либо листа.
Виталий Кудряшов
строитель, начинающий автор
Примечание: Выпускаются и более дорогие и долговечные виды сеток, в производстве которых используют аустенитную нержавеющую сталь — сплавы хрома и никеля, иногда с добавкой молибдена.
Перед тем, как армировать газобетонную кладку, необходимо определиться с вариантом арматуры. Если это стальная сетка, то берут вариант с прямоугольными ячейками размером 50*50 мм, диаметр проволоки не более 3 мм – чтобы не увеличивать толщину шва.
Виталий Кудряшов
строитель, начинающий автор
Внимание: При покупке сетки убедитесь, что она предназначена для усиления кладочных швов, а не для штукатурки.
Композитные сетки изготавливают по тому же ГОСТу, который упоминался выше. Их классифицируют по типу наполнителя (базальтовых, стеклянных, угольных или арамидовых волокон). Для армирования предназначены только базальтовые стеки, которые соответствуют показателям, обозначенным стандартом. Это:
- поверхностная плотность не менее 100 г/м²;
- разрывная нагрузка на продольные и поперечные нити минимум 20 кН/м;
- удлинение при разрыве – не более 4%;
- потеря прочности при замораживании-оттаивании не более 10%.
Размеры ячеек у базальтовых сеток варьируются в пределах 4-200 мм. Толщина базальтовой арматуры для газобетона подбирается точно так же, как и в случае со стальной. Главным достоинством такого варианта усиления кладки является малый вес и устойчивость материала к коррозии. К тому же, коэффициент теплопроводности композита ближе к аналогичному показателю газобетона, поэтому и мостиков холода не будет.
Рассказывая, какой арматурой армировать газобетон, нельзя не упомянуть про стальную перфоленту. У неё множество сфер применения, и одна из них – это усиление кладки без необходимости её штрабления. При монтаже она крепится саморезами или гвоздями к поверхности бетона, а при необходимости может применяться и для связи с кирпичной облицовкой. Главное – высокая прочность перфорированной полосы на растяжение, которая составляет не менее 100 МПа.
В её производстве используется низкоуглеродистая сталь, поверх которой термодиффузионным способом наносят цинковое покрытие. Полоса выпускается в разных типоразмерах и с различными типами перфорации.
Армирование стен из газобетонных блоков можно выполнить и стеклопластиковой арматурой с периодическим профилем, специально предназначенной для усиления бетонных конструкций. Её изготавливают по стандарту 31938, впервые введённому в 2012 году.
- В составе стеклопластика полимерная матрица, состоящая из отверждённой смолы и армирующего наполнителя, роль которого в данном случае исполняют гибкие стеклянные волокна. Как и в случае с сетками, профильная арматура может изготавливаться на основе разных наполнителей.
- Кроме стекловолокна это базальт, уголь, арамид и комбинированные композиции. У стеклопластика и базальта одинаковый предел прочности на растяжение (не менее 800 Мпа) и модуль упругости (50 ГПа). Остальные виды композитов отличаются более высокими характеристиками, а потому и стоят дороже.
- Диаметр арматуры для армирования газоблоков подбирают, исходя из свойств материала. У композита в 7 раз меньше, чем у стали, коэффициент удлинения, и выше предел прочности на растяжение. Коэффициент линейного растяжения, наоборот, ниже.
- Поэтому там, где металлические пруты по расчёту должны иметь диаметр 10 мм, толщина стеклопластиковой арматуры для армирования газобетонных блоков составит всего 7-8 мм. Цена 1 м/п стеклопластика выше, но так как полимерный композит намного легче стали, в тонне арматуры будет раз в десять больше.
Из достоинств материала можно ещё отметить высокую коррозионную стойкость и полное отсутствие электропроводности. Длина стержней не ограничена, благодаря чему можно делать меньше соединений, когда пролёт стены превышает 12 м. Процесс усиления кладки так же связан с предварительной нарезкой штроб.
Какой арматурой армировать газобетонную кладку, решать заказчику – важно только делать это по технологии.
Какие зоны необходимо усиливать арматурой — через сколько рядов и в каких зонах закладывать, рассказывалось выше. Теперь рассмотим, как это правильно делать.
- Чтобы уложить в горизонтальный шов прут диаметров 8 или 10 см, приходится предварительно нарезать пазы. Делается это с помощью инструмента, называемого «штроборез». Борозда должна получиться достаточно глубокой, чтобы стержень в неё погрузился полностью.
- Когда производится однорядное армирование дома из газобетона, пазы нарезают по оси стены (по центру кладки). Чаще это перегородки. При двухрядном усилении (оно выполняется, когда толщина стены превышает 200 мм) важно соблюсти расстояние 6 см от фронтальной грани блока до борозды, чтобы избежать откалывания бетона.
- Для улучшения адгезии закладываемого в швы раствора, пыль, образовавшаяся в штрабах в результате пиления, обязательно должна удаляться. Использовать пылесос было бы очень удобно, но чаще всего каменщики просто сметают мусор щёткой.
Поверх уложенных стержней наливается кладочный раствор. Очень важно, чтобы находящаяся в пазах арматура была полностью в нём утоплена, а не выпирала над плоскостью блоков.
Перед тем, как армировать кладку из газобетона арматурой, необходимо выполнить несложный расчет. Формула довольно проста: R = 2LH/4h.
Значения расшифровываются так:
- L — длина стены;
- H – высота стены;
- 2 – двухрядное армирование;
- 4 – порядковый номер ряда, в который закладывается арматура;
- h – высота ряда (блока).
В итоге получаете количество стержней, необходимых для армирования данной стены. Все значения вводятся в единой единице измерения.
Чтобы определить, сколько арматуры уйдёт на усиление проёмов, их количество просто умножается на число пазов, в которые она должна закладываться. К итоговой цифре добавляется на каждый элемент по 10 см для нахлёста.
Для удобства обработки блоков и выполнения кладочных работ, необходимо иметь такой перечень инструментов:
Вид инструмента | Назначение |
Кельма для газобетона | Инструмент может представлять собой каретку или ковш с удобной ручкой и зубцами на рабочей кромке. Благодаря ему, кладочный раствор точно дозируется и расходуется без потерь. |
Рубанок | Приспособление изготавливается на металлической или деревянной основе, на которой укреплены полотна пилы с мелким зубом. Посредством использования рубанка, по форме похожего на полутёрок, очень удобно срезать с поверхности наплывы раствора или бугры. |
Штроборез | Именно этот инструмент и нужен для того, чтобы нарезать борозды для укладки арматуры в горизонтальных швах кладки. Штроборез может быть как ручным, так и работать от сети. Если учесть, что на объектах не всегда подведено электричество, каменщики чаще пользуются ручным. Он не создаёт шума, немного весит и вполне удобен для работы. |
Ножовка по газобетону или пила | Ячеистый бетон хорошо поддаётся пилению, но для этого нужен специальный инструмент. Ручная ножовка для газобетона отличается от плотницких моделей увеличенной длиной и толщиной полотна. Так же на её зубьях имеется твердосплавная или победитовая напайка, а сами зубья отличаются более крупными размерами. При выполнении больших объёмов работ легче пользоваться электрическим инструментом. Удобнее всего сабельная пила. Если в наличии имеется цепная пила, то для распила газобетона нужна специальная цепь с напайками победита. |
Киянка | Молоток с резиновым бойком используется для корректировки блока в кладке. Обычный металлический вариант может нарушить целостность блока. |
Чтобы добиться хорошего качества любых строительных работ, необходимо неукоснительно следовать технологиям, разработанным производителем материала, и прописанным в СНиПах и типовых технологических картах. Но не менее важно соблюдать технику безопасности, ведь охрана труда – одна из главных задач для любого подрядчика.
Комплекс мер, направленных на организацию производства безаварийных работ, выглядит так:
- Заказчик должен выдать подрядчику разрешение на выполнение работ и проектную документацию. В том числе, на кладку из газобетонных блоков составляется проект производства работ.
- Должны быть назначены люди (бригадир или прораб), отвечающие за безопасность, и контролирующие качество производимых операций. Ответственное лицо производит инструктаж каждого рабочего по технике безопасности.
- Инструменты хранят в отведённых для этого подсобно-бытовых помещениях. Оборудование и механизмы должны быть в исправном состоянии, подготовлены к работе и заранее опробованы.
- Члены бригады должны быть обеспечены не только инструментами и спецодеждой, но и индивидуальными средствами защиты – рукавицами, касками, очками, предохранительными поясами (для работы на высоте).
- Для безопасного перемещения из одной рабочей зоны в другую, необходимо устроить удобные переходные мостки или натянуть страховочные канаты.
- На стройплощадке обязательно наличие средств сигнализации и связи, инвентаря для борьбы с возгораниями. Объект должен быть ограждён и качественно освещён.
- Для складирования материалов следует отвести специальную площадку. Качество перемычек и газоблоков, клеевой смеси и арматуры для них должно подтверждаться сертификатами соответствия и паспортами.
Выполнив все эти условия, остаётся только устроить временное освещение, установить подмости, подать на место инструменты и материалы, разбить фронт работ на захватки — и можно приступать к возведению стен из газобетона.
Армирование стен из газобетона | Практические советы от AEROC
Процесс армирования позволяет избежать образования трещин. Продольная арматура позволяет взять на себя растягивающие нагрузки при различных деформациях (усадочных и температурных), позволяя при этом увеличить расстояние между деформационными швами.
Перепад температур и повышенная влажность пагубно влияют на строительный материал, вызывая различные деформации – тепловое расширение/сужение, набухание или усадку. Газобетон обладает довольно низким коэффициентом сопротивления растяжению, поэтому последующее понижение температур и высыхание могут привести к образованию трещин.
Процесс армирования позволяет избежать образования трещин. Продольная арматура позволяет взять на себя растягивающие нагрузки при различных деформациях (усадочных и температурных), позволяя при этом увеличить расстояние между деформационными швами. Для закладки арматуры в швах делают армопояс. Обычно блоки AEROC укладываются на тонкий слой клея, поэтому для устройства арматуры на верхней поверхности блоков прорезаются штрабы. При этом можно использовать как электрический, так и ручной инструмент. Места расположения и тип армирования указываются в проекте каждого конкретного дома.
Обязательные участки для армирования:
- длинные стены, которые подвергаются различным нагрузкам ветра или грунта;
- фрагменты стен с повышенной нагрузкой;
- в обязательном порядке поддается армированию кладка первого ряда газобетонных блоков;
- ряд блоков под оконными проемами, а также зоны опирания перемычек.
Для армирования стен из блоков AEROC мы рекомендуем использовать арматуру класса А-III диаметром 8 мм. Необходимо исключить сквозное прохождение арматуры через деформационные швы.
Деформационный шов
Каждое здание является индивидуальной архитектурной конструкцией. Поэтому стандартных рекомендаций по размещению деформационных швов дать нельзя.
- На стыке фундамента и стены при помощи битумного рулонного материала;
- между холодной и теплой стеной;
- в местах изменения толщины стены;
- в неармированных стенах, длина которых составляет больше 6 м;
- рекомендуется делать деформационный шов в местах пересечения длинных несущих конструкций;
- в местах соединения с колонами или другими конструкциями;
- в местах резкого перепада высоты.
Нельзя допускать сквозного прохождения арматуры через деформационные швы.
Для несущих стен, заполняющих ячейки несущего каркаса, целесообразно использовать как раз более частое расположение деформационных швов вместо армирования.
Уплотняют деформационные швы минеральной ватой или пенополиэтиленом. Со стороны помещения швы герметизируются эластчинными паропроницаемыми материалами, с внешней стороны — атмосферостойкими герметиками или нащельниками. Облицовочный материал не должен перекрывать деформационный шов.
Армирование газобетонной кладки и перемычки.
Армирующие материалы в кладке стен из газоблоков используются для увеличения их несущей способности. Армирование производится горизонтальное и вертикальное.
● Шаг армирования для газобетонных стен составляет один метр или каждый 4-й ряд при высоте блока 250 мм и каждый 3-й ряд при высоте блока 300-350 мм.
● Укладка арматуры производится в специально сделанное углубление — в штробу, которая подготавливается при помощи ручного электрического штробореза или угловой отрезной машинки. На расстоянии 5-6 см от наружного края газоблока делается два углубления шириной и глубиной 2,5 см. В газоблоке толщиной менее 250 мм достаточно будет сделать одно углубление под один прут арматуры. Для блоков толщиной от 250 до 500 мм необходимо уложить два прута арматуры, а блоки более 500 мм необходимо армировать тремя прутами.
● Сечение арматуры для газобетонной стены должно быть 0,02% от площади кладки. Наиболее подходящий диаметр арматурных прутьев от 6 до 8 мм. Используется арматура А400-А500. Перед укладкой арматуры подготовленное углубление необходимо обеспылить и увлажнить для лучшей адгезии клея. После этого штроба заливается смесью, укладываются арматурные прутья, а остатки смеси удаляются.
● Так как арматура укладывается с нахлёстом в 30-40 мм, то потребуется сделать дополнительные, расширяющие основную штробу канавки. Концы укладываемых арматурных прутьев утапливаются в газоблоки. Такое монолитное армирование не позволит стенам из газобетонных блоков разрушиться.
● Современные тенденции газоблочного строительства предусматривают использование вместо металлических прутьев перфорированную полосу — армирующую ленту. При этом отпадает необходимость в штроблении стен, что уменьшает пыльность и увеличивает общую скорость строительства.
● Армирующая полоса для газоблоков производится из оцинкованной стали длиной три и шесть метров, а также в рулонах по 50 кг. Толщина ленты от 4 до 8 мм, ширина — от 25 до 100 мм. Армолента укладывается непосредственно на газоблок, а сверху наносится клей толщиной, равной толщине самой полосы. Блоки укладываются согласно принципу перевязки швов, минимальное смещение блоков относительно друг друга составляет 80 мм, а идеальное — 50%. Укладка каждого блока проверяется уровнем. После укладки первого ряда газоблоков второй и последующий ряды также начинают выкладывать с углов. Также после укладки каждого ряда удаляются излишки клеевого раствора и делается обработка уложенных газоблоков.
● Наклонные ряды из газоблоков можно выполнить двумя способами:
1. Сначала выложить ряды, затем подрезать
выступающие части.
2. Перед укладкой подпиливать блок под нужный
размер.
● Возведение внутренних стен одновременно с кладкой несущих стен можно делать тремя способами:
1. Перевязка выполняется на всю ширину блока.
2. Перевязка делается на 150 мм вглубь наружной
стены.
3. Возведение внутренних стен выполняется после
того, как закончено строительство несущих стен.
● Перегородки между различными помещениями в доме выкладываются перегородочными газоблоками толщиной 100-200 мм. Блоки толщиной в 100 мм используются для кладки внутренних перегородок высотой до трёх метров, а блоками толщиной до 200 мм можно выполнить кладку перегородки высотой до пяти метров. Если газоблочные перегородки выполнены без перевязки с несущими стенами, то для связки стен используются Т-образные анкера.
● Установка оконных блоков подразумевает армирование подоконного ряда из газоблоков. Внутренние стены не подвержены воздействию внешних факторов, но несмотря на это их строительство также необходимо производить с армированием. Армирование газоблоков придаёт кладке устойчивость к переменным нагрузкам.
● Оконные и дверные проёмы необходимо усиливать, но во избежание создания дополнительного мостика холода усиливать их металлическим уголком не считается целесообразным. Более правильным будет выполнить усиление при помощи U-блоков. Лотковые газоблоки монтируются в проёмах, а также используются для создания опалубки под монолитные балки и монолитные перемычки. В процессе монтажа под U-блоки ставятся подпорки, которые нельзя будет убирать до полного схватывания клеевого раствора. Полость перемычки заполняется арматурой и смесью и поэтому подпорки лучше оставлять до полного застывания смесью.
• Армопояс для газобетона. Особенности возведения стен из газоблоков.
● Установка U-блоков производится широкой частью наружу. В полость помещается 5-6 рядный арматурный каркас. Армирование кладки из газоблоков не поможет полностью защитить строение от появления трещин. Металлическая арматура помогает перераспределять нагрузку. В целях более надёжной защиты дома от появления трещин необходимо устройство деформационных швов. Эти температурные швы необходимо подвергнуть дополнительному утеплению — можно минватой. Снаружи швы обрабатываются герметиком для наружных работ и устанавливается нащельник. Изнутри швы можно заделать любым паронепроницаемым эластичным материалом. В том месте, где устроен деформационный шов, армирование кладки не делается.
● Во время строительных работ незадействованные газобетонные блоки должны находиться в упакованном состоянии. Также после окончания строительства определённой части свежеуложенная кладка из газоблоков должна быть защищена укрывным материалом. Данные манипуляции производятся для защиты газоблоков от внезапных атмосферных осадков, утренней росы и для обеспечения равномерного высыхания клеевой смеси.
Какой арматурой армировать газобетонную кладку. Какая арматура. ArmaturaSila.ru
Технология армирования газобетона
- Выполнение армированной кладки
- Технология укладки арматуры в газобетонные блоки
При строительстве жилых домов и производственных зданий из такого высокотехнологического продукта, как газобетон, требуется проводить обязательное армирование стен. Такая необходимость объясняется возможным возникновением трещин, появление которых зависит от различного напряжения, а также перепадов температуры воздуха, влаги и различных атмосферных осадков. От таких естественных, независимых ни от кого природных процессов, в стенах домов из газобетона происходит постоянное набухание и расширение блоков с последующей их усадкой, а все это в итоге вызывает деформацию самой кладки.
Схема армирования кладки из газобетона: 1 – кладка стены, 2 – плиты перекрытия, 3 – обвязочный пояс, 4 – Мауэрлат, 5 – элементы стропильной кровли.
Особенно такому воздействию подвергаются такие места, как углы комнат, оконные и дверные проемы. К тому же газоблоки как строительный материал известны своей низкой прочностью на растяжение, и такие деформационные нагрузки вызывают появление трещин на стенах, которые со временем только увеличиваются. Поэтому при возведении домов специалистами используется армирование конкретных рядов стен, которое эффективно помогает избежать деформации дома и даже его возможного разрушения в будущем.
Выполнение армированной кладки
Схема армирования газобетонной кладки по высоте стен: 1 — обвязочный пояс, 2 — армирование кладки подоконной зоны, 3 — армирование кладки в пределах высоты простенка, 4 — армирование кладки при расстоянии не более 3 м, 5 — при расстоянии более 3 м.
Все работы по армированию кладки должны быть предусмотрены в расчетно-проектной документации каждого дома, если он возводится из газобетонных блоков. Но если это условие не соблюдено, то расположение арматурного пояса в кладке можно определить своими силами. Для этого надо знать, как правильно выполнить такой расчет.
Где следует устанавливать арматуру:
- первый ряд кладки;
- каждый четвертый ряд кладки;
- места перемычек;
- под оконными и дверными проемами;
- в глухих стенах;
- устанавливают армированный пояс по всем уровням перекрытий.
Обычно для армирования газобетона используется арматура из класса А III #8211; 0,75 см², при этом два стержня укладывают параллельно друг другу. Но если такая укладка двух стержней невозможна, то допускается применение арматурного стержня, размер которого будет D #8211; 10AIII. При укладке стержней в дверные или оконные проемы рекомендуемое расстояние от края составляет 60 см.
Вернуться к оглавлению
Технология укладки арматуры в газобетонные блоки
Укладка арматурой блоков из газобетона при строительстве зданий или домов проводится только с использованием специально подготовленных для этого штроб или, как их еще называют, #8220;бороздок#8221;. Выполняют штробы согласно размеру используемой арматуры с небольшим запасом. А чтобы не повредить при выполнении штроб газобетон, отступают от края каждого блока примерно 6 см. Фиксируют арматурные стержни специально предназначенным для этого клеем. А для качественной герметизации материала используют раствор из песка и цемента.
Схема армирования стен из газобетона.
- Вначале на фундамент укладывают теплоизоляционный слой.
- Начальную линию кладки размещают как можно ровнее, потому что от этого зависит все строительство дома.
- Для контроля высоты углов постройки устанавливают деревянные рейки. А для правильного определения равномерности кладки специалисты рекомендуют натягивать шнур прямо по высоте газобетонного блока.
- С помощью штробореза прорезают #8220;бороздки#8221;. Если по расчетно-проектной документации толщина стен будет более 40 см, то тогда делают две #8220;бороздки#8221; параллельно друг другу.
- Штробы зачищают от мусора и пыли жесткой щеткой и наполовину заполняют фиксирующим клеем.
- В штробы с клеем укладывают арматурные стержни.
- Сверху герметизируют раствором из цемента и песка.
- Всю поверхность разравнивают с помощью шпателя.
- Проверяют ровность кладки с помощью строительного уровня. При необходимости для корректировки кладки используют резиновую киянку. Если конечный блок получается большой, то ненужную часть отпиливают ручной пилой, а ровность углов проверяют угольником.
По завершении всех работ, связанных с созданием армирующего пояса, строение с внешней стороны облицовывают кирпичом или другим предусмотренным в проектной документации материалом. Если дом планируют облицовывать кирпичом, то между блоком газобетона и облицовочным материалом оставляют зазор. Крепление сайдинговых листов, вагонки или оштукатуривание поверхности происходит на основе использования деревянной обрешетки.
Инструменты и материалы:
При условии соответствия газобетонных блоков принятым стандартам допускается возведение из них несущих стен строений высотой до 20-ти м (5 этажей). Клей или цементный раствор?
Использование для кладки цементного раствора в значительной степени уменьшает одно из главных достоинств газобетона – его низкую теплопроводность.
Швы раствора являются «мостиками» холода, по которым из дома уходит тепло. Поэтому для того чтобы построить дом в Иркутске, компания bgazobeton, рекомендует использовать специальный тонколистовой клей фабричного производства. К слову сказать, его чрезмерная дороговизна – не что иное, как миф, поскольку расход клея получается в несколько раз ниже, чем цементно-песчаного раствора.
Требования к основанию
Главное требование – ровность горизонтальной поверхности. Разность уровней нижней и верхней точек основания в идеале не должна превышать максимального значения толщины клеевого шва – 3 мм. Если она достигает 5-ти и более мм, первый слой нужно уложить на цементный раствор, толщина которого при необходимости может достигать 20 мм. Это позволит компенсировать неровность.
Поверх фундамента или цоколя должна быть выполнена отсечная гидроизоляция – в любом виде из возможных вариантов. С помощью мастики, рулонных изоляционных материалов или гидроизоляционных растворов из сухих смесей.
Способы кладки и схемы перевязки
Перевязка блоков осуществляется порядно, путем смещения блоков верхнего ряда относительно камней нижнего ряда. Кладка газосиликатных блоков выполняется в трех вариантах.
«В один блок» с цепной порядковой перевязкой. Если толщина стен не превышает 30 см, то этот способ является единственно возможным. При высоте H блоков до 250-ти мм величина перевязки обеспечивается не меньше 0,4H. При H больше 250 мм ее минимальное значение ограничивается 0,2H, при этом она не должна быть меньше 100 мм.
«В два блока» с перевязкой. Применяется плашковая вертикальная порядковая перевязка со значением не меньше 1/5 толщины стены (используются блоки различной толщины). Или, что проще, перевязка тычковым рядом, укладываемым через 2 ложковых ряда.
«В два блока» без вертикальной перевязки. Схема применяется в том случае, если между слоями блоков укладывается паропроницаемый утеплитель. Чтобы обеспечить связь между слоями, используются т.н. гибкие связи из стальных пластин, стержневой арматуры А400 с цинковым покрытием, сетчатой арматуры из базальтопластика или стеклопластика, которые укладывается в швы кладки.
Если последние не совпадают по высоте, допускается изгиб арматуры не более 30°.
Основные правила кладки
Вы определились с вопросом из чего построить дом, и остановились на блоках из газобетона, теперь самое время узнать правила кладки из блоков. Каждый ряд начинается с углов здания и ведется к центру. На углах здания желательно установить стойки-шаблоны, между которыми натягивается шнур-причалка. По нему контролируется ровность рядов в горизонтальной и вертикальной плоскостях.
Вертикальность стены проверяют отвесом, закрепленным на стойке. После завершения каждого ряда поверхность нужно выровнить рубанком или теркой – чтобы не было перепадов между соседними блоками. Выровненная поверхность после обеспыливания смачивается водой.
Рекомендуемая толщина швов:
✔ клеевых – 0,5-3 мм;
✔ цементно-песчаных – 10-15 мм
✔ горизонтального и 8-12 мм – вертикального.
Клей наносится на торец уложенного блока и нижележащий камень зубчатым шпателем сплошным слоем. Камень опускается на слой клея вертикально без горизонтальных смещений и корректируется резиновой киянкой. Избыток клея, выдавливаемого из швов, не затирается, а подрезается после схватывания.
Армирование стен
Нужно понимать, что армирование газобетонных стен не увеличивает их несущую способность. Его задача – противодействовать возникновению и расширению усадочных трещин, которые могут появляться при деформациях и подвижках фундамента, превышающих нормальные значения.
Если есть основания предполагать деформацию фундамента свыше 2-х см, осадку выше 10 см или крен больше 5 см, то армирование считается необходимым. Но в любом случае вреда от него не будет, поэтому при наличии сомнений его лучше использовать.
Армирование производится арматурой А400-А500. При этом общая площадь сечения арматуры обеспечивается не менее 1/50 площади сечения кладки.
Есть три способа конструкционного армирования:
✔ Армирование мест возле оконных, дверных и других проемов, которые ослабляют кладку. Выполнение этого армирования не требуется при наличии монолитного каркаса из железобетона.
✔ Армирование по всему периметру стен. Рекомендуется выполнять при кладке из «свежих», только что произведенных блоков, при строительстве в местах с большими сезонными колебаниями температур и сильными ветровыми нагрузками, а также при прогнозируемых деформациях и усадке фундамента, о которых говорилось выше.
✔ Вертикальное армирование, связывающее верхний обвязочный монолитный пояс, выполненный по верху стен, с фундаментом. Способ рекомендуется для сейсмо- и ураганоопасных районов или при наличии прочих неблагоприятных условий или особенностей, к которым относят: опасность схода лавин, расположение дома на склоне, случаи отдельно стоящих ограждений или стен, использование крупноформатных панелей из газобетона.
Видео: Кладка и армирование стен из газобетона
Опыт финов по строительству домов из газобетона
АРМИРОВАНИЕ ГАЗОБЕТОННОЙ КЛАДКИ
Чтобы стена из газобетона не пошла трещинами необходимо не только правильно выбрать плотность газобетона, его класс прочности, но и правильно армировать кладку.
Следует понимать, что даже если Вы праильно рассчитали фундамент, но неправильно выбрали строительный материал вы рискуете получить трещины по фасаду здания. Это связано с таким процессом как усадка здания в следствие высыхания ячеистого бетона и уменьшения его отпускной влажности в 30% до рассчетных 4,5%. Этот случай трещинообразования более характерен для неавтоклавных материалов, например пеноблоков.
Усадка при высыхании:
Для автоклавного газобетона — 0,1-0,5мм/м
Для неавтоклавного пеноблока — 1,3мм
Также трещины в стене можно получить при недостаточной глубине опирания панели перекрытия на стену. Изобретению армирования кладки из газоблоков мы обязаны финам, где дома из автоклавных газоблоков начали строить значительно раньше, чем в Украине, а поэтому Финляндия на сегодняшний день обладает огромным опытом проектирования, строительства и эксплуатации домов из газобетона. Вначале они не армировали свои дома т.к. при правильном выборе характеристик газобетона можно строить здания до 5 этажей включительно. В течение 20 лет эксплуатации таких домов они проводили аналитику и создавали нормативные документы, благодаря которым сегодня в Финляндии очень трудно найти дом из газобетона с трещинами на фасаде.
Такая прочность стены была достигнута за счет контурного армирования стен. Финскими нормативами рекомендуется армировать первый и каждый четвертый ряд кладки. Для этого в газобетоне делается штробы и туда закладывается арматура, которая прижимается клеевым раствором. Штроба прорезается как при помощи ручного штробореза, так и при помощи специального электроинструмента. Перед укладкой арматуры в газобетон Стоунлайт штроба очищается от пыли и заполняется клеем. Используют всегда стальные пруты арматуры диаметром 8мм. Чтобы ее согнуть в нужных местах на месте стройки спользуют ручные приспособления.
Арматура вдавливается в штробу таким образом, чтобы она была полностью покрыта клеем. От внешней (фасадной) поверхности блока арматура должна находиться на расстоянии 6см. В Украине принято в стену закладывать сразу 2 арматуры, чтобы перестраховаться.
На углах здания штробы необходимо выполнять с закруглением.
Обязательно необходимо армировать газобетонную кладку под оконными проемами. Существует важное требование: арматура должна выходить за пределы оконного проема минимум на 90см, а лучше на полтора метра по возможности.
Если блоки по толщине больше 250мм то нужно закладывать два прута. Если 500мм — желательно три, при толщине блоков менее 250мм достаточно одного прута арматуры.
Если Вы правильно будете армировать кладку, то ваш дом никогда не пойдет трещинами, а при использовании газобетона именно Стоунлайт Вам всегда гарантирован класс прочности В2,5.
Внутренние стены также необходимо армировать, как и наружные. Возьмите за правило закладывать арматуру во все стены и вы сотворите поистине монолитный и прочный дом, который будет стоять 100 лет и достанется вашим внукам и правнукам.
Ниже размещена общая схема по сводке правил закладки арматуры в газобетонную стену. Очень важно чтобы вы изучили это изображение и заставили своего прораба выполнить правильно армирование своего дома.
Обратите внимание на формулу расчета длины усадочной арматуры под оконными проемами. Ведь не такие дурные эти фины, что их дома стоят уже по 70 лет и не падают, как наши кирпичные хрущевки.
На эту тему Вы можете получить дополнительную информацию, если прочтете наш цикл статей Дом из газобетона
Источники: http://ostroymaterialah.ru/bloki/armirovanie-gazobetona.html, http://www.stroypraym.ru/-07-04-13-26-35/sekrety-stroitelstva/1810-kladka-i-armirovanie-sten-iz-gazobetona.html, http://stroy-sklad.kiev.ua/articles/armirovanie-gazobetona.html
Комментариев пока нет!
Армирование газобетонных блоков при возведении двухэтажного дома
Возведение строений из газобетонных блоков имеет некоторые особенности, так как ячеистые бетоны существенно отличаются от шлакоблоков и кирпичей. Укладка газоблоков происходит намного проще, потому как имеет очень ровные поверхности, легкий вес и крупные размеры. При обнаружении на поверхности блока каких-то дефектов, он простым образом устраняется отпиливанием с помощью обычной ножовки. При строительстве дома обязательно проводить армирование газобетонных блоков.
Монтаж газобетонных блоков
Выкладка газобетонных блоков начинается с угла фундамента, расположенного выше остальных. Горизонтальность каждого ряда проверятся с помощью строительного гидроуровня. Перед выкладкой стеновых конструкций, фундамент накрывается гидроизоляционной тканью, а затем слоем цементного раствора.
Гидроизоляция защитит стену от подсоса влаги из фундамента. На раствор укладывается первый ряд стены согласно натянутой по маячкам веревки. В том случае, если в кладочном ряду образовался промежуток, следует вырезать из газоблока доборный элемент и вставить на пустующее место.
Нанесение строительного состава на газоблоки осуществляется с помощью шпателя. Раствор наносится также на боковые поверхности блоков. Если используется клей, то нужно помнить, что слой клея должен быть не очень толстым, так как он способен обеспечить хорошее сцепление при минимальном расходе.
Выравнивание блоков следует осуществлять с помощью строительного молотка с резиновым наконечником.
Следует отметить, что строительные работы, связанные с газобетонными блоками должны осуществляться при определенных погодных условиях, температура должна быть не менее +5С и не более +25С.
В том случае, если приходится проводить работы при более высоких температурах, следует периодически смачивать блоки водой, а при работе в зимний период в клеящий состав следует добавлять особые противоморозные присадки.
Кладочный раствор готовится непосредственно перед началом работы. Для этого в сухую смесь заливается раствор и вымешивается с помощью строительного миксера до однородной консистенции.
Для наружной кладки выбирают блоки около 400 мм толщиной, а для перегородок — около 200 мм.
Особое внимание должно быть уделено четкой горизонтальности рядов, каждый ряд следует проверять с помощью строительного уровня. Для выравнивания производится зачистка верхнего слоя газобетона специальным рубанком.
Армирование газобетонной кладки
Армирование газобетонных блоков необходимо для того, чтобы предотвратить появление трещин на стенах будущего здания. Эта процедура неспособна закрепить кладку на требуемом уровне, поэтому прочнее армированная кладка не станет. Тем не менее, эта процедура рекомендована при строительстве любого крупного здания.
Армирование производится не для всех рядов, а только для тех, что являются наиболее уязвимыми — обычно это места нахождения перемычек и опорных зон, это также первый ряд кладки, зона под проемами окна. Армирование осуществляется по верхней части газоблоков в продольном направлении.
В качестве армирующего материала могут быть использованы:
- Двухслойный каркас из стальной проволоки, жесткой скрепленный между собой прочными соединениями. Кладется в один ряд.
- Стальная арматура диаметром 6-8 мм. При ее использовании нужно будет уложить два параллельных ряда.
Перед размещение арматуры на газоблоке следует подготовить в кирпичах штробы с помощью строительного штробореза.
Штробы хорошенько чистят от пыли и заполняют клеящим составом, а сверху выкладывают арматуру, смахивая лишние остатки раствора. В зависимости от сложности проекта, армирование газобетонных блоков может быть предусмотрено технической документацией в нестандартных местах.
Технология оштукатуривания газобетона
Чтобы защитить газобетон от образования трещин, требуется максимально ограничить поступление к нему влаги. Существуют особые требования, предъявляемые к оштукатуриванию газобетонных блоков.
- Раствор для оштукатуривания должен иметь достаточно высокую паропроницаемость, чтобы предотвратить накопление влаги между слоем штукатурки и блоком, а также внутри самих блоков.
- Перед нанесением штукатурки производится грунтование стен смесью на основе акрила, которая повысит адгезивные качества газоблоков со штукатуркой.
- После этого на стены следует нанести на стену штукатурный раствор, в котором утапливается армирующий материал (сетка). Следом за этим наносится штукатурный слой.
- После высыхания штукатурки стены зачищаются и выравниваются.
- На последнем этапе стены покрываются фасадной краской, которая обладает повышенными свойствами по паропроницаемости.
Армирование стен из газобетона — как армировать и чем, технология укладки
Кто бы что не говорил, но на сегодняшний день не существует идеального строительного материала или технологии. А предпочтение тем или иным строительным материалам застройщики отдают не только с учетом климатических, сейсмических или иных зон, но и принимая во внимание менталитет и предпочтения жителей региона. Для многих россиян американско-канадско-финские технологии неприемлемы изначально, без объяснения причин, а некогда традиционное кирпичное домостроение давно перестало удовлетворять минимальным требованиям энергоэффективности.
Так, чтобы достичь коэффициента теплопроводности полуметрового газобетонного блока нужно возвести кирпичную стену толщиной более полутора метров. Существуют и другие виды ячеистых бетонов, но не один из них не позволяет изготовить блоки с точностью газобетонных, что в свою очередь не дает делать супертонкие швы (1 – 2 мм) при монтаже. А ведь они также являются мостиками холода. Поэтому для многих застройщиков газобетон является безальтернативным стеновым материалом.
Достоинства и недостатки газобетона
Итак, материал выбран – газобетон. Каковы же его главные достоинства.
В каких случаях
армируют газобетон?
К упомянутым здесь теплоизоляционным свойствам и отменным геометрическим показателям газобетонных блоков необходимо добавить их малый вес, относительно высокую прочность, экологичность, простоту монтажа и хорошие звукоизоляционные характеристики.
К недостаткам же, в первую очередь, можно отнести хрупкость и гигроскопичность. Здесь обязательно необходимо предупредить, что при длительном контакте с водой блок может промокнуть насквозь и навсегда потерять значительную часть своих неплохих тепловых показателей. Раз есть недостатки, значит должны быть пути их минимизации. Об одном из них и пойдет речь в данной статье. А именно, об армировании стен из газобетонных блоков, позволяющем радикально снизить риски от последствий хрупкости материала.
Технология и инструменты для армирования стен из газобетонных блоков
Любой производитель заинтересован в росте продаж производимого материала, а поэтому старается вместе с самим материалом вооружить покупателя точной технологией его использования. Как же много людей, проигнорировавших эту технологию, клянут производителя и сам материал, а ведь на самом деле не так уж сложно изначально сделать все правильно. Начнем с определения мест армирования дома из газобетонных блоков.
Суть армирования стен заключается во вклеивании двух лент стальной арматуры диаметром 8 мм в наружные блоки и одной ленты в блоки перегородок первого ряда кладки и каждого следующего четвертого ряда. Также армируются блоки, над которыми монтируются перемычки, блоки под оконным проемом и под армирующим поясом. Это позволяет перераспределить нагрузки и в значительной мере нивелировать хрупкость блоков и их невысокую устойчивость к изгибающим нагрузкам, а также уменьшить возможное трещинообразование.
Необходимо добавить, что также армируются косые стены под ломаные и мансардные крыши и ряд в уровне мауэрлата под ними.
По технологии арматура должна со всех сторон обволакиваться кладочным клеем. Для этого в ряду блоков делаются углубления – штробы (канавки) 25 мм. шириной и 25 мм. глубиной на расстоянии не менее 60 мм. от края газобетонного блока.
Для этого применяются специальные инструменты – штроборезы или другие, более универсальные, способные упростить этот процесс. Начнем с самых простых – ручных.
Несложное приспособление в виде доски определенной ширины позволяет произвести работу точнее и быстрее. Этот способ достаточно трудоемкий, но в отличие от всех остальных – практически беспыльный. Готовая штроба очищается щеткой.
Также существуют электрические штроборезы, в которых устанавливаются 2 фрезы на заданном расстоянии. Также можно использовать обычную угловую шлифмашинку – болгарку, на которую установить два диска по бетону через расширительную шайбу.
Они прорезают две параллельные линии на заданную глубину. После этого саму штробу нужно выбирать в ручную или при помощи перфоратора и специальной лопатки.
Очень быстрый, но пыльный способ изготовления штробы, — при помощи ручного фрезера и полукруглой фрезы диаметром 20-25 мм. Его легко позиционировать от края блока и выставлять нужную глубину. Также некоторые строители для этой цели используют ручную дисковую пилу с изменением наклона рабочего стола и получением V-образной штробы.
Процедура армирования газобетона – как правильно провести
Когда штробы в ряду стены готовы, можно приступать к укладке арматуры. Это нужно сделать до приготовления клеевого раствора, потому что на этом этапе выгибаются все углы, стыкуются концы армировки. При этом нужно, чтобы они укладывались внахлест и ни в коем случае не на стыках блоков.
Перегородки связываются с наружными стенами так же с помощью арматуры. После того, как процесс подготовки выполнен, следует вынуть подогнанную арматуру из пазов и приступить к изготовлению клеевого кладочного раствора.
В заполненную клеем штробу вдавливается арматура так, чтобы раствор покрыл ее полностью, а излишки клея тщательно убираются шпателем или кельмой. Важно, чтобы раствор ни в коем случае не выступал за поверхность блока, иначе при кладке следующего ряда мы не сможем получить тонкий шов, чем ухудшим теплотехнические характеристики стены.
Армирование оконных и дверных перемычек
Для этих целей необходимо использовать U-образный блок, который всегда есть в перечне продукции любого производителя газобетонных блоков. Кроме того важно не забывать, что блоки, на которые будет опираться перемычка также необходимо армировать минимум на 900 мм в каждую сторону от проема. Для начала нужно изготовить деревянную конструкцию в оконном проеме, на которую будут опираться U-образные блоки.
Установить данные блоки утолщенной стороной наружу. Желательно утеплить паз пенополистирольной плитой 30 – 50 мм, закрыть боковые стенки наружных блоков, после этого уложить пространственный армировочный каркас и залить будущую перемычку бетоном.
После полного застывания бетона конструкцию можно разбирать. Следует сказать, что на практике, чтобы не замедлять процесс кладки стен, U-образные блоки укладываются вместе с рядовыми, и уже полученные углубления над проемами заполняются армировкой и бетоном. Об утеплителе часто забывают, а зря. Он не дает промерзнуть бетону при серьезных морозах, которые в России иногда случаются.
Таким же способом, только по периметру, рекомендуется делать и армировочный пояс под перекрытием. Как вариант можно использовать для наружной кладки тонкие перегородочные блоки, утеплять их, а изнутри выставить опалубку.
Иногда бетонный армопояс заливают на всю ширину стены, но так делать крайне нежелательно, потому что бетон в несколько раз холоднее ваших блоков и в этом месте вы получите не просто мостик холода, а настоящий теплообменник, который способен нивелировать все ваши затраты на получение энергоэффективного дома. А возможно даже и навсегда поселить в нем плесень.
Особенности армирования косых стен под ломаные крыши
Если предполагается устройство легкой кровли, то бывает достаточным выполнить рядную армировку в 2 ленты арматуры и сделать меньше шаг между стропилами для лучшего распределения нагрузок.
Если же кровля будет тяжелой – например, из керамической черепицы – то лучше предусмотреть дополнительный ряд из U-образных блоков, который уложится уже на запиленные под нужным углом, армированные косые блоки. Заполнение паза при этом нужно делать более густым бетоном, чем при заливке горизонтальных участков.
Уважаемые читатели, если у вас остались вопросы, задавайте их, используя форму ниже. Мы будем рады общению с вами 😉
Рекомендуем другие статьи по теме
Армировать или не армировать стену?
Приглашаем учиться к нам в «школу строительства»
Смотрите также на канале в ютубе школу строительства.
Акции снижения цен на газобетонные блоки смотри здесь
Малоэтажные проекты любой сложности из газоблоков Итнг с расчетом фундаментов на основании ИГИ делаем МЫ. Цены разумные.
Проект ландшафтного дизайна вашего участка можете заказать нам.
Для более детального ознакомления работы с газобетонными блоками Ytong вы можете пройти обучение в школе мастерства при компании Кселла-Аэроблок-Центр информация по которой находится на странице их сайта.
Армировать или не армировать стену из газобетонных блоков Ytong?
Мне как специалисту нашей компании занимающегося вопросами строительства и проектирования домов из газобетонных блоков Итонг, газобетонных блоков Грас, газобетонных блоков Бонолит, коттеджей из газобетонных блоков Ytong, Грас часто задают вопрос –А надо ли армировать кладку стены возводимую (строящуюся) из газобетонных блоков Итонг или пеноблоков Итонг? На такую постановку вопроса- однозначного ответа Да! или Нет!- дать не возможно по ряду объективных причин связанных, как с качеством самого газобетонного блока применяемого в строительстве газобетонных стен, качества кладки газобетонных блоков, на что ведется кладка на раствор или клей Итонг и какой марки раствор , клей Итонг. Необходимость армирования стены коттеджа из газоблоков Итонг зависитот от конструкции стены. Прочности газобетонного блока применяемого в кладке, в качестве несущего газобетонного блока Итонг в несущих стенах коттеджей. На армирование газобетонной стены влияет такой фактор, как ширина опоры перекрытия на газобетонную стенку, армирование несущей стены из газобетонных блоков Ytong зависит и от длинны пролета перекрываемого железобетонными плитами перекрытия. На необходимость армировать стену из газобетонных блоков итонг влияют и условия эксплуатации будущего дома коттеджа который строится- дом для периодического или постоянного проживания, зависит это и от надежности построенного фундамента, а точнее способен он держать нагрузки от дома без каких либо деформаций или все-таки деформации фундамента возможны. От длинны стен и их возможных температурных деформаций и усадочных деформаций, от ширины оконных пролемов и ширины несущих простенков. Попробуем разобраться в этих причинах по газобетонным блокам, пеноблокам не позволяющим дать однозначный ответ, надо ли армировать кладку стен из газоблоков грас или итонг при строительстве коттеджа. Разбор причин которые требуют армирования стен коттеджей из газобетонных блоков Yong буду проводить на основании нормативных требований при проектировании и строительстве действующих на сегодняшний день:
СТО 501-52……, СТО НААГ 3…. и старого доброго СНИП по каменным и армокаменным конструкциям, неукоснительное исполнение которых, я считаю необходимиым условием проектирования и строительства коттеджей, не смотря на то, что сегодня они носят рекомендательный характер.
1- Это сами газобетонные блоки или пеноблоки- каковы их геометрические размеры -да, да это существенно влияет на прочность стены. Если газобетонные блоки из которых строится газобетонная стена не соответствуют по своим параметрам длинна ширина высота размерам предусмотренным Гостом-особенно высота, то при кладке стены из таких газобетонных блоков к примеру из Белоруссии или Липецких заводов, блоков с допусками +- 10мм на клей при толщине шва в 2-3мм возникает возможность контакта блоков друг с другом не через «постель» из клея, что приводит в месте касаний газобетонных блоков, пеноблоков к возникновению точечных напряжений, способных привести к трещинам- инженерное решение здесь одно — снять, перераспределить возникающие точечные напряжения путем армирования кладки стен из газобетонных блоков.
Можно сказать давайте в этой ситуации отойдем при кладке стены из газобетонного блока от клея и посадим газобетонный блок на раствор, но раствор при толщине шва в 12-15мм обладает большой усадкой и усадочные напряжения способны оторвать раствор от газобетонного блока и может сложится ситуация при которой стена сложенная из газобетонных блоков на внешний вид монолитная ,но из-за напряжений вызванных усадкой раствора они уже оторваны друг от друга и малейшие динамические воздействия на стену могут привести к ее разрушению. Что-бы эти усадочные напряжения в растворе компенсировать, надо тоже вводить арматуру. Производители газобетонных блоков, пеноблоков последствия указанные мною выше знают и постоянно работают над точностью геометрических размеров блоков.Кому-то это удается, кому-то не очень.Сегодня располагая имеющейся информацией под размеры исключающие армирование по этим причинам я бы назвал газобетонные блоки Ytong Калужский газобетон и газобетонные блоки Грас, газоблоки bonolit, точность геометрических размеров этих торговых марок исключает необходимость армирования по этой причине.
2- Это тоже касаемо самих газобетонных блоков или пеноблоков –это отклонения прочности блоков в партии. По прочности Гост регламентирует эти отклонения от заявленного класса бетона производителем так называемым коэффициэнтом вариации. Когда эти отклонения в рамках Гост (регламентирует их показатель Каэф. вариации прочности), то соответственно стена однородна по прочности, если этого нет, то стена по прочности не однородна и для выравнивания последствий от неоднородности прочности сложенной газобетонной стены из газобетонных блоков, пеноблоков требуется армирование кладки стены из газобетонных блоков. Здесь также основываясь на имеющейся информации предпочтение имеют теже газобетонные блоки и в той же последовательности газобетонные блоки Ytong, газобетонные блоки Калужский газобетон и газобетонные блоки Грас
3- На армирование стен из газобетонных блоков и газоблоков, влияют также и конструктивные особенности стен. К примеру при перекрытии монолитной плитой или сборными пустотными плитами перекрытия, иногда при особенностях нагрузок, толщины стен, нличия фактора внецентренного сжатия и наличия эксцентриситета (несооосность центра тяжести стены и оси приложения нагрузки от перекрытий) наличие узких простенков в стенах коттеджей построенных из газобетонных блоков Итонг, наличие определенного колличества проемов и их размеры в стенах из газоблоков Ютонг, наличие разгрузочных деформационных железобетонных монолитных поясов в стенах домов и тип конструкции монолитного пояса в стене коттеджа построенного из газобетонных блоков Ytong. Влияет на необходимость армировать или не армировать стены из газобетонных блоков Итонг и конструкция и надежность фундамента исключающая его деформации. Вопросы армирования надо рассматривать как какие-то особенности строительства вашего коттеджа, а так как армирование подобного рода в стенах коттеджа из газобетонных блоков Итонг расчетное, то решения по армированию и конструктивную схему армирования стен домов из газобетонных блоков Итонг или газобетонных блоков бонолит к примеру, должен принимать проектировщик на основании расчета фундамента вашего коттеджа и конструкции фундамента вашего коттеджа.
Вывод такой:- только комплексная оценка выше указанных факторов, позволяет сделать вывод надо ли вам армировать кладку стены из газобетонных блоков, пеноблоков или нет? Для принятия решения по армированию кладки газобетонных стен из газобетонных блоков, можете прпоконсультироваться у нас и мы вам поможеим найти правильное решение по армированию газобетонных стен вашего коттеджа.
Армирование как конструктивный фактор прочности конструкции газобетонной стены из газобетонных блоков Итонг . При правильном выборе типа газобетонного блока, наличии рабочей документации качественного прпоекта, расчета фундамента и его правильной конструкции, исключающие выше указанные факторы, армирование газобетонных стен из газобетонных блоков Итонг отпадает. Если выше указанные факторы в вашем проекте не учтены, и хуже того вы строите на «авось» по всякого рода «советам»- то армирование делать надо, но оно как правило при таких условиях особо не помогает.
Я всегда говорю: сопоставте затраты на проектирование от фундамента до крыши с общими затратами на строительство дома, и попытайтесь понять, что сэконовив на проектирование около 150-170т.руб вы можете потерять несколько миллионов. Качественный проект с полным комплектом рабочей документации -это ваша страховка.
Автоклавный газобетон
Автоклавный газобетон (AAC) состоит из мелких заполнителей, цемента и расширителя, который заставляет свежую смесь подниматься, как тесто для хлеба. Фактически, этот вид бетона на 80 процентов содержит воздух. На заводе, где он изготавливается, материал формуют и разрезают на детали с точными размерами.
Затвердевшие блоки или панели из автоклавного газобетона соединяются тонким слоем раствора. Компоненты можно использовать для стен, полов и крыш. Легкий материал обеспечивает отличную звуко- и теплоизоляцию и, как и все материалы на основе цемента, является прочным и огнестойким.Чтобы быть долговечным, AAC требует некоторого вида отделки, например, модифицированной полимером штукатурки, природного или искусственного камня или сайдинга.Ключевые аспекты AAC, будь то проектирование или строительство с его помощью, описаны ниже:
Преимущества
- Автоклавный газобетон сочетает в себе изоляционные и структурные возможности в одном материале для стен, полов и крыш. Его легкий вес / ячеистые свойства позволяют легко резать, брить и придавать форму, легко принимать гвозди и винты, а также позволяют направлять его для создания пазов для электрических каналов и трубопроводов меньшего диаметра.Это дает ему гибкость при проектировании и изготовлении, а также дает возможность легко регулировать в полевых условиях.
- Прочность и стабильность размеров. Материал на основе цемента, AAC устойчив к воде, гниению, плесени, плесени и насекомым. Установки имеют точную форму и соответствуют жестким допускам.
- Огнестойкость отличная, AAC толщиной восемь дюймов достигает четырехчасового рейтинга (фактическая производительность превышает это значение и соответствует требованиям испытаний до восьми часов).А поскольку он негорючий, он не горит и не выделяет токсичных паров.
- Малый вес означает, что значения R для AAC сопоставимы с обычными каркасными стенами, но они имеют более высокую тепловую массу, обеспечивают герметичность и, как только что отмечалось, не горючие. Этот легкий вес также обеспечивает значительное снижение уровня шума для уединения как от внешнего шума, так и от других помещений при использовании в качестве внутренних перегородок.
Но у материала есть некоторые ограничения.Он не так широко доступен, как большинство изделий из бетона, хотя его можно доставить куда угодно. Если он должен быть отправлен, его легкий вес является преимуществом. Поскольку его прочность ниже, чем у большинства бетонных изделий или систем, в несущих приложениях его обычно необходимо армировать. Он также требует защитной отделки, поскольку материал пористый и будет разрушаться, если оставить его незащищенным.
Размеры
Доступны как блоки, так и панели. Блоки укладываются так же, как и обычная кладка, но с тонким слоем раствора, а панели устанавливаются вертикально на всю высоту этажа.Для структурных нужд внутри стеновой секции размещаются залитые, армированные ячейки и балки. (Вогнутые углубления вдоль вертикальных краев могут создать цилиндрическую сердцевину между двумя соседними панелями.) Для обычных применений вертикальная ячейка размещается по углам, по обе стороны от отверстий и на расстоянии от 6 до 8 футов вдоль стены. AAC в среднем составляет около 37 фунтов на кубический фут (pcf), поэтому блоки можно размещать вручную, но панели из-за их размера обычно требуют небольшого крана или другого оборудования.
Панели простираются от пола до верха стены:
- Высота: до 20 футов
- Ширина: 24 дюйма
- Толщина: 6, 8, 10 или 12 дюймов (внутренняя толщина 4 дюйма
Блоки больше и легче традиционной бетонной кладки:
- Высота: обычно 8 дюймов
- Ширина: 24 дюйма в длину
- Толщина: 4, 6, 8, 10 и 12 дюймов
- Стандартный размер 8 на Блок размером 8 на 24 дюйма весит около 33 фунтов;
Специальные формы:
- U-образная соединительная балка или блоки перемычек доступны толщиной 8, 10 и 12 дюймов.
- Блоки для язычков и пазов доступны от некоторых производителей, и они соединяются с соседними блоками без раствора по вертикальным краям.
- Порошковые блоки доступны для создания вертикальных армированных ячеек раствора.
Установка, соединения и отделка
Благодаря схожести с традиционной бетонной кладкой, блоки (блоки) из автоклавного газобетона могут быть легко установлены каменщиками. Иногда к монтажу подключаются плотники. Панели тяжелее из-за своего размера и требуют использования крана для установки.Производители предлагают обучающие семинары, и обычно для небольших проектов достаточно иметь одного или двух опытных установщиков. В зависимости от выбранного типа отделки они могут быть приклеены непосредственно или механически к поверхности AAC.
Блок
- Уложен и выровнен первый слой. Блоки укладываются вместе с тонким слоем строительного раствора непрерывным соединением с перекрытием не менее 6 дюймов.
- Стены выровнены, выровнены и выровнены резиновым молотком.
- Отверстия и нестандартные углы вырезаются ножовкой или ленточной пилой.
- Определены места армирования, размещена арматура и выполняется заливка раствора. Затирку необходимо подвергнуть механической вибрации для ее уплотнения.
- Связующие балки размещаются в верхней части стены и могут использоваться для крепления тяжелых приспособлений.
Панели
- Панели размещаются по одной, начиная с угла. Панели укладываются в слой тонкослойного раствора, а вертикальная арматура прикрепляется к дюбелям, выступающим от пола, до того, как будет размещена соседняя панель.
- Сплошная соединительная балка создается наверху либо из фанеры и материала AAC, либо с помощью соединительной балки.
- Отверстия можно вырезать предварительно или в полевых условиях.
Соединения
- Каркас / каркас крыши соединяется с обычной верхней пластиной или ураганными ремнями, встроенными в соединительную балку.
- Каркас пола прикреплен с помощью стандартных ригелей, закрепленных на стороне узла AAC рядом с соединительной балкой.
- Напольные системы AAC опираются непосредственно на стены AAC.
- Более крупные конструкционные стальные элементы устанавливаются на приварные пластины или пластины с болтами, устанавливаемые в соединительную балку.
Отделка
- Отделка типа Stucco изготавливается специально для AAC. Эти модифицированные полимером штукатурки герметизируют от проникновения воды, но при этом пропускают пары влаги для воздухопроницаемости.
- Обычные сайдинговые материалы крепятся к поверхности стены механически. Если желательна обратная вентиляция сайдингового материала, следует использовать опушку.
- Кладочный шпон может быть приклеен непосредственно к поверхности стены или может быть построен как полость. Виниры для прямого наложения обычно представляют собой легкие материалы, такие как искусственный камень.
Соображения по вопросам устойчивого развития и энергетики
Автоклавный газобетон с точки зрения устойчивого развития предлагает как материалы, так и характеристики. Что касается материала, он может содержать переработанные материалы, такие как летучая зола и арматура, которые могут способствовать получению баллов в системе LEED® или других экологических рейтинговых системах.Кроме того, он содержит такое большое количество воздуха, что содержит меньше сырья на единицу объема, чем многие другие строительные продукты. С точки зрения производительности система ведет к ограничению ограждающих конструкций. Это создает энергоэффективную оболочку и защищает от нежелательных потерь воздуха. Физические испытания демонстрируют экономию на нагреве и охлаждении примерно от 10 до 20 процентов по сравнению с традиционной конструкцией рамы. В постоянно холодном климате экономия может быть несколько меньше, потому что этот материал имеет меньшую тепловую массу, чем другие типы бетона.В зависимости от расположения производства по отношению к объекту проекта, AAC может также вносить вклад в местные кредиты на материалы в некоторых системах рейтинга экологичного строительства.
Производственные и физические свойства
Сначала в суспензию смешивают несколько ингредиентов: цемент, известь, воду, мелкоизмельченный песок и часто летучую золу. Добавляется расширительный агент, такой как алюминиевый порошок, и жидкая смесь отливается в большую заготовку. Когда суспензия реагирует с расширителем с образованием пузырьков воздуха, смесь расширяется.После первоначального застывания полученный «пирог» разрезается проволокой на блоки или панели точного размера, а затем запекается (автоклавируется). Тепло способствует более быстрому отверждению материала, благодаря чему блоки и панели сохраняют свои размеры. Армирование помещается в панели перед отверждением.
В ходе этого производственного процесса производится легкий негорючий материал со следующими свойствами:
Плотность: от 20 до 50 фунтов на кубический фут (pcf) — он достаточно легкий, чтобы плавать в воде
Прочность на сжатие: 300 до 900 фунтов на квадратный дюйм (psi)
Допустимое напряжение сдвига: от 8 до 22 psi
Термическое сопротивление: 0.От 8 до 1,25 на дюйм. толщиной
Класс звукопередачи (STC): 40 для толщины 4 дюйма; 45 для толщины 8 дюймов
Автоклавный газобетон
В настоящее время нет торговой ассоциации, представляющей отрасль автоклавного газобетона. Производство AAC все еще существует в Северной Америке. Мы предлагаем вам поискать в Интернете представителей дилеров, которые могут помочь вам с потенциальной доступностью продукта в вашем регионе.
Проекты AAC
История трех городов: универсальность AAC
для жилых помещений. Использование газобетона в автоклаве (AAC) дает множество преимуществ.Возможно, в подтверждение универсальности AAC, три описанных здесь жилых проекта совершенно разные, но имеют общую тему безопасности. Большой дом на одну семью в лесу, строительство которого ведет сам хозяин; скромный дом на одну семью в лесу, спроектированный архитектором, стремящимся к экологически безопасному и здоровому образу жизни; и крупная застройка вдоль побережья залива Луизиана, требующая превосходной погодоустойчивости.
Handal Home, Мэриленд: простота и безопасность
Эта большая резиденция (6800 квадратных футов), расположенная в лесу на юге Мэриленда, столкнулась с рядом строительных проблем.Таким образом, владелец, который сам управляет строительством, хотел простую систему. Это оказались 12-дюймовые блоки AAC. Ему нужны были их теплоизоляционные и негорючие свойства, чтобы противостоять лесным условиям дома, которые включали низкие температуры и, возможно, опасность пожара. По его словам, простота AAC позволяет ему за один шаг построить конструктивную стену, которая будет изолирована, устойчива к термитам и готова к отделке. Он не хотел прикреплять сайдинг, предпочитая вместо этого прямую отделку: гипсовую штукатурку для интерьера и лепнину для экстерьера.
Дом Додсона: здоровый и безмятежный
Несколько лет назад, когда архитектор Элис Додсон выбрала компанию AAC для строительства собственного дома, это было отчасти из соображений здоровья и окружающей среды. Давний сторонник устойчивого развития, она также уже следила за Bau-biologie. Относительно неизвестный в Соединенных Штатах, но хорошо известный в Европе среди архитекторов и медицинских работников, Bau-biologie занимается биологией строительства или строительством для жизни. Это произошло после того, как быстрое строительство в послевоенной Германии привело к тому, что мы теперь называем синдромом больного здания.Тогда, как и сейчас, она искала здоровые строительные решения. С этой целью она выбрала блоки и панели AAC для создания воздухопроницаемых стен из кирпича, которые не выделяют летучие органические соединения (ЛОС). Это создает экологически чистое здание со спокойным и тихим интерьером. А поскольку в процессе строительства участвовал ее муж-пожарный, негорючие материалы были необходимы.
Оболочка из AAC также обеспечивает хорошую теплоемкость и изоляцию. Благодаря энергоэффективной оболочке, дополненной солнечными батареями и дровяной печью, счета за газ в течение первого года составляли всего 100 долларов для дома площадью 4000 квадратных футов.В доме может оставаться тепло в течение двух-трех дней даже после отключения электроэнергии. Додсону нравится, как из материала можно вылепить с помощью деревообрабатывающих инструментов различные формы и элементы, такие как колонны и камины, и он продолжает поддерживать AAC с клиентами, которые ценят его универсальность и эстетический потенциал.
Роща на пляже Инлет: безопасность и устойчивость к погодным условиям
Эта история успеха произошла в результате разрушений, вызванных ураганом Катрина. The Grove at Inlet Beach — это первый жилой комплекс с высокой плотностью застройки, построенный во Флориде Panhandle. Он призван противостоять погодным условиям и угрозам безопасности в окружающей среде побережья Мексиканского залива.Все стены, полы и потолки в этих домах для одной семьи сделаны из панелей и блоков AAC. Превосходная огнестойкость (четыре часа на четыре дюйма) была ключом к утверждению местного зонирования, и в результате не возникло проблем с возгоранием конструкции. Когда прибывают ураганы, эти конструкции готовы противостоять ветру со скоростью 150 миль в час (миль в час) (Категория 4) и с надлежащим усилением могут быть спроектированы так, чтобы противостоять ветру со скоростью 200 миль в час или более (Категория 5). Дома AAC также не разрушаются наводнениями: они противостоят поднимающимся уровням воды, гниению, плесени и плесени, их можно чистить, перекрашивать и снова открывать для жителей — в восстановлении не требуется.
Как будто безопасность и устойчивость к погодным условиям не были достаточной причиной для выбора AAC для своего дома, застройщик рассчитывает сэкономить 35 процентов на счетах за коммунальные услуги и 65 процентов на страховых взносах.
Комфорт бетона
Некоторые гости в отеле Джорджии сегодня спят лучше благодаря автоклавному газобетону (AAC). Примерно в часе езды от Атланты, на территории Форсайта, штат Джорджия, «Комфорт Сьютс», небольшой участок, примыкающий к межштатной автомагистрали, возник несколько проблем.А высокая стоимость земли делает все более распространенным строить на участках, которым присущи такие проблемы, как шум, неровная местность или минимальные препятствия. Поэтому разработчики обратились к бетонной системе, чтобы удовлетворить свои потребности в реализации качественного проекта — в данном случае — в прочном, тихом четырехэтажном здании рядом с оживленным шоссе.
Подробнее о AAC.
Заявление об ограничении ответственности
Список организаций и информационных ресурсов не является ни одобрением, ни рекомендацией Portland Cement Association (PCA).PCA не несет никакой ответственности за выбор перечисленных организаций и продуктов, которые они представляют. PCA также не несет ответственности за ошибки и упущения в этом списке.
Правильное использование газобетона в автоклаве
16 октября 2008 г., 9:01 CDTПолучайте новости каменной промышленности на свой почтовый ящик
Подпишитесь на Masonry Messenger , чтобы получать ресурсы по каменной кладке и информацию, необходимую, чтобы оставаться в курсе.
Нет, спасибо
Икспо Ричард Э. Клингнер
Примеры автоклавных элементов из газобетона. Изображение любезно предоставлено Ytong International.
Блоки автоклавного ячеистого бетона (AAC) чаще всего укладываются с использованием тонкослойного раствора и могут использоваться для кладки несущих стен. Положения по проектированию каменной кладки AAC приведены в Кодексе MSJC, а требования к строительству — в Спецификации Объединенного комитета по стандартам кладки (MSJC).В этой статье кратко рассматривается производство AAC; проиллюстрированы практические примеры возведения кладки из ААК; Обобщены проектные положения MSJC для кирпичной кладки AAC; особое внимание уделяется практическому руководству по строительству каменной кладки AAC.Автоклавный газобетон (AAC) — это легкий, похожий на бетон материал с множеством небольших закрытых внутренних пустот. Спецификации материалов для AAC предписаны в ASTM C1386. AAC обычно весит от одной шестой до одной трети веса обычного бетона и составляет от одной шестой до одной трети прочности.Подходит для несущих стен и стен с низким и средним этажом. Его теплопроводность составляет одну шестую или меньше, чем у обычного бетона, что делает его энергоэффективным. Его огнестойкость немного выше, чем у обычного бетона такой же толщины, что делает его полезным в приложениях, где важна огнестойкость. Из-за внутренних пустот AAC имеет низкую передачу звука, что делает его полезным с акустической точки зрения.
История AAC
AAC был впервые коммерчески произведен в Швеции в 1923 году.С того времени его производство и использование распространились в более чем 40 странах на всех континентах, включая Северную Америку, Центральную и Южную Америку, Европу, Ближний Восток, Дальний Восток и Австралию. Благодаря этому обширному опыту было подготовлено множество примеров использования в различных климатических условиях и в соответствии с различными строительными нормами.В Соединенных Штатах современное использование AAC началось в 1990 году для жилых и коммерческих проектов в юго-восточных штатах. Производство простых и усиленных AAC началось в 1995 году на юго-востоке США и с тех пор распространилось на другие части страны.Общенациональная группа производителей газобетона была образована в 1998 году как Ассоциация автоклавных газобетонных изделий (AACPA, www.aacpa.org). Положения по проектированию и строительству каменной кладки AAC приведены в Кодексе и Спецификации MSJC. AACPA включает одного производителя в Монтеррее, Мексика, и многие технические материалы доступны на испанском языке. AAC одобрен для использования в категориях сейсмического проектирования A, B и C Дополнением 2007 г. к Международным строительным кодексам, а также в других географических точках с одобрения местного строительного чиновника.
AAC может использоваться для изготовления неармированных блоков каменного типа, а также армированных на заводе панелей пола, кровельных панелей, стеновых панелей, перемычек, балок и других специальных форм. В этой статье рассматриваются в основном только каменные блоки.
Материалы, используемые в AAC
Материалы для AAC зависят от производителя и местоположения и указаны в ASTM C1386. Они включают некоторые или все из следующего: мелкодисперсный кварцевый песок; Летучая зола класса F; гидравлические цементы; кальцинированная известь; гипс; расширительные агенты, такие как тонко измельченный алюминиевый порошок или паста; и смешивание воды.Каменные блоки из AAC не имеют внутреннего армирования, но могут быть усилены на строительной площадке с помощью деформированной арматуры, размещенной в вертикальных ячейках или горизонтальных связующих балках.Как производится AAC
Для производства AAC песок измельчается до необходимой степени измельчения в шаровой мельнице, если это необходимо, и хранится вместе с другим сырьем. Затем сырье дозируется по весу и доставляется в смеситель. В смеситель добавляют отмеренные количества воды и расширительного агента, и цементный раствор перемешивают.Стальные формы подготовлены для приема свежей AAC. Если должны производиться армированные панели AAC, стальные арматурные каркасы закрепляются внутри форм. После перемешивания кашицу разливают в формы. Расширяющий агент создает небольшие мелкодисперсные пустоты в свежей смеси, которые увеличивают объем примерно на 50 процентов в формах в течение трех часов.
Общие этапы производства автоклавного газобетона.
В течение нескольких часов после заливки начальная гидратация цементных смесей в AAC дает ему достаточную прочность, чтобы сохранять свою форму и выдерживать собственный вес.
После резки газобетон транспортируется в большой автоклав, где завершается процесс отверждения. Автоклавирование необходимо для достижения желаемых структурных свойств и стабильности размеров. Процесс занимает от восьми до 12 часов при давлении около 174 фунтов на квадратный дюйм (12 бар) и температуре около 360ºF (180ºC), в зависимости от марки производимого материала. Во время автоклавирования устройства для нарезки проволоки остаются в исходном положении в блоке AAC. После автоклавирования их разделяют для упаковки.
Агрегаты AAC обычно помещаются на поддоны для транспортировки. Неармированные элементы обычно упаковываются в термоусадочную пленку, в то время как армированные элементы связываются только полосами с использованием угловых ограждений, чтобы минимизировать потенциальные локальные повреждения, которые могут быть вызваны полосами.
Классы прочности AAC
AAC производится с различной плотностью и соответствующей прочностью на сжатие в соответствии со стандартом ASTM C1386. Плотность и соответствующие значения прочности описаны в терминах «классов прочности» (см. Таблицу 1).ТАБЛИЦА 1 — Классы прочности AAC | |||
Класс прочности | Указанная прочность на сжатие, фунт / дюйм2 (МПа) | Номинальная объемная плотность в сухом состоянии, фунт / фут3 (кг / м3) | Пределы плотности, фунт / фут3 (кг / м3) |
AAC 2.0 | 290 (2,0) | 25 (400) 31 (500) | 22 (350) — 28 (450) 28 (450) — 34 (550) |
AAC 4.0 | 580 (4,0) | 31 (500) 37 (600) | 28 (450) — 34 (550) 34 (550) — 41 (650) |
AAC 6.0 | 870 (6.0 ) | 44 (700) 50 (800) 44 (700) 50 (800) | 41 (650) — 47 (750) 47 (750) — 53 (850) 41 (650) — 47 (750) 47 (750) — 53 (850) |
Типичные размеры блоков AAC каменного типа
Типичные размеры блоков AAC каменного типа (блоки каменного типа) показаны в таблице 2 ниже.ТАБЛИЦА 2 — Размеры каменной кладки AAC | |||
Тип блока AAC | Толщина, дюймы (мм) | Высота, дюймы (мм) | Длина, дюймы (мм) |
Стандартный блок | 2-15 (50-375) | 8 (200) | 24 (610) |
Jumbo Block | 4-15 (100-375) | 16–24 (400–610) | 24–40 (610–1050) |
Типичные области применения каменной кладки AAC
Кладка AAC может использоваться в широком спектре структурных и неструктурных применений.Например, в приложениях, используемых в проектах в Аризоне и Лас-Пальмасе, Мексика, тепловая и акустическая эффективность AAC делает его привлекательным выбором для ограждающих конструкций здания.Конструктивное проектирование каменной кладки AAC Кладка
AAC спроектирована в соответствии с положениями Приложения A Кодекса MSJC (MSJC 2008), на который ссылаются коды моделей по всей территории Соединенных Штатов. Расчет кладки AAC аналогичен расчету прочности кладки из глины или бетона и основан на заданной прочности на сжатие.Соответствие указанной прочности на сжатие подтверждается испытанием кубиков AAC на сжатие с использованием ASTM C1386 при изготовлении каменных элементов из AAC. Подробное практическое руководство по проектированию с использованием каменной кладки AAC представлено в 5-м издании Руководства для дизайнеров каменной кладки (MDG 2007).Комбинации изгиба и осевой нагрузки Кладка
AAC разработана для сочетания изгиба и осевой нагрузки с использованием тех же принципов, что и для расчета прочности глиняной или бетонной кладки.Номинальная грузоподъемность рассчитывается исходя из плоских сечений, растянутой стали при текучести и эквивалентного прямоугольного блока сжатия.Выравнивающий слой и прокладки для первого ряда каменных блоков из AAC — первый ряд блоков из AAC укладывается на выравнивающий слой из строительного раствора ASTM C270 типа M или S с использованием клиньев (при желании) для отвеса и выравнивания блоков.
Укрепление и развитие армирования
Армирование в кирпичной кладке AAC состоит из деформированной арматуры, помещенной в залитые вертикальными стержнями или связующими балками и окруженных кладочным раствором.Требования к развитию и стыковке деформированной арматуры в растворе идентичны требованиям, предъявляемым к кладке из глины или бетона. Консервативно, материал AAC не учитывается при расчете покрытия на сопротивление раскалыванию.Сдвиг и опора
Как и в случае с глиняной или бетонной кладкой, сопротивление сдвигу кирпичной кладки AAC вычисляется как сумма сопротивления сдвигу из-за самого AAC и сопротивления сдвигу из-за арматуры, ориентированной параллельно направлению сдвига. Поскольку обычная арматура стыка основания вызывает местное раздавливание AAC под поперечными проволоками, Кодекс MSJC требует, чтобы учитывался только сдвиговой вклад связующих балок с залитой арматурой.Чтобы предотвратить локальное раздавливание ААЦ, номинальные напряжения в нем ограничиваются заданной прочностью на сжатие. Когда элементы пола или крыши упираются в стены из AAC, также возможно разрушение края стены при сдвиге. Это решается путем ограничения напряжения сдвига на потенциальных наклонных поверхностях разрушения.Укладка элементов каменной кладки AAC
На уровне диафрагмы стены кладки AAC соединяются с полом или крышей с помощью цементированной балки, аналогично конструкции из глиняной или бетонной кладки. После укладки блоков кладки из AAC плоскость стены можно выровнять с помощью шлифовальной доски, предназначенной для этой цели.Укладка блоков кладки AAC с использованием тонкослойного раствора и зубчатого шпателя — последующие слои укладываются с использованием модифицированного полимером тонкослойного раствора, наносимого специальным зубчатым шпателем.
Электрические и сантехнические установки в AAC
Электрические и сантехнические установки в кирпичной кладке AAC размещаются в проложенных пазах. При установке желобов необходимо соблюдать осторожность, чтобы обеспечить сохранение структурной целостности элементов AAC. Не сокращайте арматурную сталь и не уменьшайте конструктивную толщину элементов AAC, за исключением случаев, когда это разрешено проектировщиком.В вертикально перекрывающих элементах AAC горизонтальная прокладка разрешается только в областях с низкими напряжениями изгиба и сжатия. В горизонтальных элементах AAC следует минимизировать вертикальную маршрутизацию. Когда это возможно, может быть полезно предусмотреть специальные выемки для большого количества трубопровода или водопровода.Внешняя отделка для AAC
Незащищенная внешняя поверхность AAC ухудшается при воздействии циклов замораживания и оттаивания в насыщенном состоянии. Для предотвращения такого ухудшения качества при замораживании-оттаивании, а также для повышения эстетических характеристик и стойкости к истиранию AAC следует использовать внешнюю отделку.Они должны быть совместимы с лежащим в основе AAC с точки зрения теплового расширения и модуля упругости, а также должны быть паропроницаемыми.Доступно множество различных типов внешней отделки. Модифицированные полимером штукатурки, краски или отделочные системы являются наиболее распространенной внешней отделкой для AAC. Они увеличивают сопротивление проникновению воды AAC, позволяя при этом пропускать водяной пар. Тяжелые краски на акриловой основе, содержащие заполнители, также используются для повышения устойчивости к истиранию. Обычно нет необходимости выравнивать поверхность, а горизонтальные и вертикальные швы могут быть скошены как архитектурный элемент или могут быть заполнены.
Кладочный шпон можно использовать поверх каменной кладки AAC почти так же, как он используется для других материалов. Шпон крепится к стене из кладки AAC с помощью специальных стяжек. Пространство между AAC и кладкой можно оставить открытым (образуя дренажную стену) или заполнить раствором.
Когда панели AAC используются в контакте с влажной или насыщенной почвой (например, в стенах подвала), поверхность, контактирующая с почвой, должна быть покрыта водонепроницаемым материалом или мембраной.Внутренняя поверхность должна быть либо без покрытия, либо иметь паропроницаемую внутреннюю отделку.
Изображение любезно предоставлено Aercon Florida.
Внутренняя отделка для каменной кладки AAC
Внутренняя отделка используется для повышения эстетики и долговечности AAC. Они должны быть совместимы с лежащим в основе AAC с точки зрения теплового расширения и модуля упругости, а также должны быть паропроницаемыми.Доступно множество различных видов внутренней отделки. Внутренние стеновые панели AAC могут иметь тонкий слой штукатурки на минеральной основе для достижения гладкой поверхности.Легкая внутренняя штукатурка на основе гипса может обеспечить более толстое покрытие для выравнивания и выпрямления стен, а также для создания основы для декоративных красок для внутренних помещений или отделки стен. Внутренние штукатурки содержат связующие вещества, улучшающие их адгезию и гибкость, и обычно наносятся путем распыления или затирки.
Гипсокартон при нанесении на внутреннюю поверхность наружных стен из AAC следует крепить с помощью полос опалубки, обработанных под давлением. При нанесении на внутренние стены влагостойкий гипсокартон можно наносить непосредственно на поверхность AAC.
Для коммерческих применений, требующих высокой прочности и низких эксплуатационных расходов, часто используются покрытия на акриловой основе. Некоторые содержат заполнители для повышения стойкости к истиранию.
Когда керамическая настенная плитка должна быть уложена поверх AAC, подготовка поверхности обычно необходима только тогда, когда поверхность AAC требует выравнивания. В таких случаях перед укладкой керамической плитки на поверхность AAC наносится покрытие на основе портландцемента или гипса. Затем керамическую плитку следует приклеить к обшитой паркетом стене либо цементным тонким раствором, либо органическим клеем.Во влажных помещениях, таких как душевые, следует использовать только паржевое покрытие на основе портландцемента, а керамическую плитку следует укладывать только на цементный тонко застывший раствор.
Типовые детали конструкции для элементов AAC
Широкий спектр деталей конструкции для каменной кладки AAC доступен на веб-сайтах отдельных производителей, доступных через веб-сайт AACPA.Об авторе
Ричард Э. Клингнер, Ph.D. — профессор Л. П. Гилвина гражданского строительства в Техасском университете в Остине, где он специализируется на поведении и проектировании каменной кладки, особенно в условиях землетрясений.Он также является автором книги «Структурный дизайн каменной кладки» и бывшим председателем Объединенного комитета по стандартам каменной кладки (MSJC).
Статьи по теме
Жил-был дом: первые пятьдесят лет, подсчет
Файлы Фешино: Арки
Присоединяйтесь к MCAA сейчас всего за 799 долларов
Другие заголовки о масонстве
Конструктивное проектирование — Автоклавный газобетон Aercon AAC
A = площадь основания стены на основе сплошного поперечного сечения, в 2
AAC = газобетон в автоклаве
A s = площадь арматурной стали в армированном элементе или площадь поперечного сечения швартовки, дюйм 2
A vf = площадь поперечной арматуры в соединительной балке диафрагмы, дюйм 2
b = ширина или толщина рассматриваемого элемента, в
d = расстояние от крайнего изгибного сжимающего волокна до центра тяжести армирующей стали в армированном элементе, в D = статическая нагрузка на стену из AAC из-за собственного веса, фунт
E c = модуль упругости бетона с нормальным весом, фунт / кв. Дюйм
E AAC = модуль упругости AAC, psi
E s = модуль упругости арматурной стали, psi
e = эксцентриситет наложенной осевой нагрузки, дюйм
F = фактическая сила в плоскости наверху стенки сдвига, фунт
F a = допустимое осевое напряжение сжатия в AAC, фунт / кв. Дюйм
f a = фактическое осевое напряжение сжатия в AAC, фунт / кв. Дюйм
F b = допустимое напряжение сжатия при изгибе в AAC, фунт / кв. Дюйм
f b = фактическое напряжение сжатия при изгибе в AAC, фунт / кв. Дюйм
f ’ c = минимальная заданная прочность на сжатие нормального бетона, фунт / кв. Дюйм
f ’ AAC = минимальная заданная прочность на сжатие AAC, фунт / кв. Дюйм
F s = допустимое растягивающее напряжение в стальной арматуре или креплении, фунт / кв. Дюйм
f s = фактическое растягивающее напряжение в арматурной стали, фунт / кв. Дюйм
F t = допустимое напряжение при изгибе при растяжении в AAC, фунт / кв. Дюйм
f t = фактическое напряжение при изгибе при растяжении в AAC, фунт / кв. Дюйм
F v = допустимое напряжение сдвига в AAC, фунт / кв. Дюйм
f v = фактическое напряжение сдвига в AAC по толщине элемента, psi
h = эффективная высота стены, фут
H = глубина диафрагмы, измеренная в горизонтальном направлении, фут
I = момент инерции стены, основанный на твердом поперечном сечении, в 4
I трещины = момент инерции трещины для бетона нормального веса, дюйм 4
j = коэффициент, определенный на основе анализа упругости железобетонного профиля
k = коэффициент, определенный на основе анализа упругости железобетонного профиля
L = длина поперечной стенки AAC, фут
M = фактический расчетный момент для анализа, ft k или ft lb
M , основание = момент, учитываемый в основании стены AAC, фут-фунт
M конц = допустимый момент для железобетонной секции, когда бетон является контролирующим элементом, фут-фунт
M max = максимальный момент, возникающий в стене AAC из-за боковой нагрузки, фут-фунт
M nom = допустимый момент для армированного бетонного профиля нормального веса, фут-фунт
M otm = опрокидывающий момент для конструкции стены со сдвигом, фут-фунт
M r = момент сопротивления сдвигу стенки, основанный на статической нагрузке, фут-фунт
M rAAC = допустимый момент для поперечной стенки AAC, когда изгибное сжатие является контролирующим критерием, фут-фунт
M арматура = допустимый момент для железобетонной секции, когда арматурная сталь является регулирующим элементом, фут-фунт Mrsteel = допустимый момент для стены, работающей на сдвиг AAC, когда напряжение в швартовке является контролирующим критерием, фут-фунт
n = модульное соотношение AAC или обычного бетона к арматурной стали
P ac = допустимая наложенная осевая сжимающая нагрузка для AAC, когда сжимающее напряжение является контролирующим критерием, фунт
P при = допустимая наложенная осевая сжимающая нагрузка для AAC, когда изгибное растягивающее напряжение является контролирующим критерием, фунт
P v = допустимая сила в плоскости наверху стенки сдвига, фунт
R = коэффициент уменьшения статической нагрузки
r = радиус вращения стены, основанный на твердом поперечном сечении, в
S = модуль упругости стенки или диафрагмы на основе твердого поперечного сечения, дюйм 3
с = расстояние между анкерами, сопротивляющимися подъему, когда прогиб в соединительной балке является критерием контроля, фут
с м = расстояние между анкерами, сопротивляющимися подъему, когда момент в соединительной балке является критерием контроля, фут
s v = расстояние между анкерами, сопротивляющимися подъему, когда сдвиг в соединительной балке является определяющим критерием, фут
T = сила натяжения, используемая для сопротивления опрокидыванию стенки сдвига, фунт
T c = усилие натяжения хорды в системе диафрагмы, фунты или тысячи фунтов
t = толщина элемента, дюйм
V = фактическая сила сдвига в месте, представляющем интерес для анализа диафрагмы, фунт
v = фактическая сила сдвига на единицу длины в месте, представляющем интерес для анализа диафрагмы, PLF
V AAC = прочность на сдвиг, предоставленная AAC, фунт
V c = прочность на сдвиг, обеспечиваемая бетоном нормального веса, фунт
В г = допустимое усилие сдвига для залитого раствора или соединительной балки для анализа диафрагмы, plf
V s = прочность на сдвиг, обеспечиваемая арматурой на сдвиг в бетоне нормального веса, фунт
V u = расчетное поперечное усилие, фунт
w = расчетное скоростное давление, создаваемое ветром, psf; или равномерная нагрузка для анализа пучка, plf; или наложенная статическая нагрузка, plf wbb = собственный вес соединительной балки, plf
w вверх = подъемная нагрузка, выдерживаемая несущей балкой, plf
x = высота над полом, на которой возникает максимальный изгибающий момент в стене AAC, фут
γ = номинальная насыпная плотность AAC в сухом состоянии, pcf
γ D = расчетный собственный вес AAC, pcf
ρ = отношение площади арматурной стали к площади бетона, As / bd
µ = коэффициент трения
Автоклавный газобетон: обзор и применение
Автоклавный газобетон (AAC) — это тип сборного железобетона с расширяющим агентом, который поднимает смесь, подобно дрожжам в хлебном тесте.После затвердевания этот тип бетона содержит около 80% воздуха. Газобетон в автоклаве изготавливается на заводе, а материал формуют в блоки или плиты с точными размерами. Их можно использовать для отделки стен, полов и крыш.
Как и все материалы на основе цемента, элементы AAC прочные и огнестойкие. Чтобы добиться прочности, AAC должен быть покрыт каким-либо типом отделки, например, модифицированной полимером штукатуркой, камнем или сайдингом. AAC также предлагает звуко- и теплоизоляцию.
Определите лучшие строительные материалы для вашего следующего строительного проекта.
Автоклавный газобетон выпускается в виде блоков и панелей. Блоки укладываются так же, как и обычные блоки кладки, с тонким слоем раствора. Панели устанавливаются вертикально, от уровня пола до верха стены. Блоки можно размещать вручную, так как AAC весит около 37 фунтов на кубический фут. Однако для установки панелей обычно требуется небольшой кран или другое оборудование из-за их размера.
Стандартные размеры панелей и блоков перечислены ниже:
ЭЛЕМЕНТ | ВЫСОТА | ШИРИНА | ТОЛЩИНА |
Панели | До 20 футов | 24 дюйма | Доступен в 6, 8, 10 и 12 дюймов |
Блоки | 8 дюймов (наиболее распространенный) | 24 дюйма | Доступны размеры 4, 6, 8, 10 и 12 дюймов |
Доступны другие специальные формы:
- U-образные соединительные балки имеют толщину от 8 до 12 дюймов.
- Блоки для шпунта и паза используются для соединения смежных блоков без раствора по вертикальным краям.
- Порошковые блоки для создания вертикальных армированных ячеек раствора.
Физические свойства
Автоклавный газобетон изготавливается из смеси цемента, извести, воды, мелкого заполнителя и, как правило, летучей золы. Добавляется расширительный агент, такой как алюминиевый порошок, чтобы вызвать химическую реакцию, создавая пузырьки, которые расширяют смесь. Элементы разрезаются на блоки или панели, армируются, а затем запекаются для более быстрого отверждения.Физические свойства AAC перечислены ниже:
- Плотность: 20-50 шт.
- Прочность на сжатие: От 300 до 900 фунтов на кв. Дюйм
- Термическое сопротивление: 0,8 — 1,25 на дюйм толщины
- Допустимое напряжение сдвига: от 8 до 22 фунтов на кв. Дюйм
- Класс передачи звука: 40 для толщины 4 дюйма и 45 для толщины 8 дюймов
Преимущества автоклавного газобетона
Некоторыми полезными свойствами автоклавного газобетона являются:
- Сочетание изоляционных свойств и структурной целостности стен, полов и крыш.
- Доступен в различных формах и размерах.
- Вторичный материал.
- Желоба для кабелепровода и водопровода легко режутся.
- Гибкость конструкции и конструкции, позволяющая при необходимости вносить изменения в условия эксплуатации.
- Durable: AAC устойчив к воде, плесени, плесени, гнили и насекомым
- Стабильность размеров: блоки AAC имеют точную форму с жесткими допусками.
- Огнестойкость: 8-дюймовым элементам AAC предоставляется четырехчасовой рейтинг, но фактическая производительность обычно превышает это число.AAC негорючий, поэтому он не горит и не выделяет токсичные газы. Значения R
- стен AAC сопоставимы с обычными каркасными стенами из-за их небольшого веса. Однако они обладают более высокой тепловой массой, воздухонепроницаемостью и звукоизоляцией.
Ограничения автоклавного газобетона
Как и любой строительный материал, автоклавный газобетон также имеет технические ограничения:
- AAC не так широко доступен, как другие традиционные бетонные изделия.Однако его можно легко транспортировать благодаря небольшому весу.
- AAC имеет более низкую прочность, чем другие бетонные изделия, и требует армирования в несущих конструкциях.
- Требуется нанесение финишных покрытий для защиты от атмосферных воздействий, поскольку материал пористый и при частом воздействии на него разрушается.
- Товары могут отличаться по качеству и цвету, обратитесь к производителю.
- Требуется внешняя облицовка наружных стен для защиты от атмосферных воздействий.
- По сравнению с другими энергоэффективными изолированными стенами, R-значения относительно ниже.
- Более высокая стоимость, чем у обычных бетонных блочных и деревянных каркасных конструкций, что может быть проблемой бюджета.
Устойчивое развитие
С точки зрения экологичности автоклавный газобетон предлагает преимущества с точки зрения материалов и производительности. Это может снизить воздействие здания на окружающую среду, улучшив при этом контроль температуры в помещении и производительность HVAC.
Что касается материалов, то он содержит переработанные компоненты, такие как летучая зола и арматура.Это может способствовать получению кредитов LEED или других зеленых рейтинговых систем. AAC также содержит много воздуха, что снижает количество сырья на единицу объема.
С точки зрения производительности системы из автоклавного ячеистого бетона позволяют создавать плотные ограждающие конструкции, уменьшая утечки воздуха и повышая энергоэффективность. Физические испытания показывают экономию на нагреве и охлаждении от 10 до 20 процентов по сравнению с традиционной конструкцией рамы. Однако в холодном климате экономия может быть ниже, поскольку у AAC меньшая тепловая масса, чем у других типов бетона.
Все о автоклавном ячеистом бетоне (AAC)
Автоклавный газобетон (AAC) — это сборный железобетон, состоящий из натурального сырья. Впервые он был разработан в Швеции в 1920-х годах, когда архитектор впервые объединил обычную бетонную смесь из цемента, извести, воды и песка с небольшим количеством алюминиевой пудры. Алюминиевая пудра служит расширителем, который заставляет бетон подниматься, как тесто для хлеба. В результате получается бетон, который почти на 80 процентов состоит из воздуха.Бетон AAC обычно превращается в блоки или плиты и используется для строительства стен из цементного раствора, аналогично тому, как это используется для строительства стандартных бетонных блоков.
Как производится газобетон
Автоклавный газобетон начинается с того же процесса, который используется для смешивания всего бетона: портландцемент, заполнитель и вода смешиваются вместе, образуя суспензию. При введении алюминия в качестве расширительного агента пузырьки воздуха проникают по всему материалу, образуя легкий материал с низкой плотностью.Влажному бетону придают форму с помощью форм, а затем после его частичного высыхания разрезают на плиты и блоки. Затем устройства перемещаются в автоклав для полного отверждения под действием тепла и давления, что занимает всего от 8 до 12 часов.
Бетонные блоки AAC очень удобны в обработке, их можно резать и сверлить с помощью обычных деревообрабатывающих инструментов, таких как ленточные пилы и обычные дрели. Поскольку бетон легкий и относительно невысокий, его необходимо испытывать на прочность на сжатие, содержание влаги, объемную плотность и усадку.
Здание из бетона AAC
Бетон AAC можно использовать на стенах, полу, панелях крыши, блоках и перемычках.
- Панели доступны толщиной от 8 дюймов до 12 дюймов и 24 дюймов в ширину и длиной до 20 футов.
- Блоки бывают длиной 24, 32 и 48 дюймов и толщиной от 4 до 16 дюймов; высота 8 дюймов.
Затвердевшие блоки или панели из газобетона в автоклаве соединяются с помощью раствора с тонким слоем, используя методы, идентичные тем, которые используются со стандартными бетонными блоками.Для дополнительной прочности стены могут быть усилены сталью или другими конструктивными элементами, проходящими вертикально через пространства в блоках.
Бетон AAC можно использовать для стен, полов и крыш, а его легкий вес делает его более универсальным, чем стандартный бетон. Материал обеспечивает отличную звуко- и теплоизоляцию, а также прочность и огнестойкость. Однако, чтобы быть долговечным, AAC должен быть покрыт нанесенной отделкой, такой как модифицированная полимером штукатурка, натуральный или искусственный камень или сайдинг.Если они используются для подвалов, то внешняя поверхность стен из AAC должна быть покрыта толстым слоем водонепроницаемого материала или мембраны. Поверхности AAC, подверженные воздействию погодных условий или влажности почвы, будут разрушаться. Внутренние поверхности можно отделать гипсокартоном, штукатуркой, плиткой или краской или оставить незащищенными.
Свойства газобетона
По сути, AAC предлагает только умеренные значения изоляции — около R-10 для стены толщиной 8 дюймов и R-12,5 для стены толщиной 10 дюймов. AAC предлагает значение R около 1.25 на каждый дюйм толщины материала. Но AAC имеет высокую тепловую массу, что замедляет передачу тепловой энергии и может значительно снизить затраты на нагрев и охлаждение. А конструкции AAC можно сделать очень герметичными, чтобы уменьшить потери энергии из-за утечек воздуха. AAC также создает отличный звукоизоляционный барьер.
Недвижимость | Газобетон | Традиционный бетон |
Плотность (PCF) | 25–50 | 80–150 |
Прочность на сжатие (PSI) | 360–1090 | 1000–10000 |
Огнестойкость (часы) | ≤ 8 | ≤ 6 |
Теплопроводность (Btuin / ft2-hr-F) | 0.75–1,20 | 6,0–10 |
Преимущества и приложения
Некоторые из преимуществ использования автоклавного газобетона включают:
- Отличный материал для звукоизоляции и звукоизоляции
- Огнестойкий и термитостойкий
- Доступны в различных формах и размерах
- Высокая тепловая масса накапливает и выделяет энергию с течением времени
- Вторичный материал
- Простота в обращении и установке благодаря малому весу
- Легко режется для пазов и отверстий для электрических и сантехнических линий
- Экономичность при транспортировке и транспортировке по сравнению с заливным бетоном или бетонным блоком
Недостатки
Как и все строительные материалы, у AAC есть ряд недостатков:
- Товары часто отличаются по качеству и цвету.
- Необработанные внешние стены требуют внешней облицовки для защиты от погодных условий.
- При установке в среде с высокой влажностью внутренняя отделка требует низкой паропроницаемости, а внешняя отделка требует высокой проницаемости. Показатель R
- относительно низок по сравнению с энергоэффективной изолированной стеновой конструкцией.
- Стоимость выше обычной бетонно-блочной и каркасной конструкции.
- Прочность AAC составляет от 1/6 до 1/3 прочности традиционного бетонного блока.
Цены на блоки AAC
Базовый блок AAC стандартного размера 8 x 8 x 24 дюйма стоит от 2,20 до 2,50 доллара за квадратный фут по состоянию на июль 2018 года, что немного больше, чем стандартный бетонный блок, который стоит около 2 долларов за квадратный фут. Однако затраты на рабочую силу для AAC могут быть ниже, поскольку его меньший вес упрощает транспортировку и установку. Стоимость будет варьироваться от региона к региону и зависит от местных ставок оплаты труда и требований строительных норм.
Укрепление стены из легкого автоклавного газобетона ферроцементом
Аннотация:
Стеновая многослойная система из ферроцемента с сердцевиной из блоков AAC была разработана для использования в качестве несущей конструкции стены вместо обычных железобетонных элементов.Предлагаемый несущий несущий элемент стены подходит для строительства в суровых климатических условиях, например, в пустыне. Предлагаемая система должна обеспечивать желаемые свойства, такие как теплоизоляция, трещиностойкость и экологичность, а также простоту конструкции. Были проведены различные испытания для оценки физической, механической прочности и теплопроводности предлагаемой структурной системы, а также для выявления ее преимуществ и недостатков. Экспериментальные, теоретические и аналитические исследования на моделях были проведены для проверки эффективности использования ферроцемента.Экспериментальная программа предназначена для исследования влияния выбранных параметров на поведение кирпичной стены, армированной ферроцементом. Выбранные параметры включали: толщину кирпичей AAC, тип и наличие или отсутствие соединителей сдвига, а также тип раствора. В этом исследовании экспериментальная программа разделена на три типа тестирования. Первое и второе испытания направлены на определение механических свойств ферроцементных стенок, а именно испытание на осевое сжатие, испытание на изгибную нагрузку.Третье испытание — это испытание на боковую нагрузку в плоскости, проводимое для моделирования воздействия сейсмической и ветровой нагрузки на несущие стены. В эту диссертацию вошли тридцать восемь экземпляров, которые были исследованы с помощью различных тестов. В общей сложности двадцать три образца были испытаны при осевой сжимающей нагрузке, а пять образцов были испытаны на изгиб в качестве просто поддерживаемых изгибных элементов, в то время как десять полномасштабных образцов стен были испытаны при боковой нагрузке в плоскости. Теоретические модели были разработаны для моделирования осевого сжатия и модели изгибной нагрузки.Сравнение теоретических и экспериментальных результатов было проведено и показало разумное согласие, которое послужило проверкой для разработанных моделей. Модель конечных элементов была разработана и проверена в сравнении с экспериментальной работой для представления кирпичной стены и перекрытия из ферроцемента. Коммерческая программа конечных элементов общего назначения под названием ANSYS использовалась для разработки моделей испытательных образцов из-за ее способности устранять причины нелинейности, включая нелинейность материала и геометрическую нелинейность.Результаты конечно-элементной модели хорошо коррелируют с экспериментальными результатами, которые послужили проверкой аналитической модели. Таким образом, аналитическая модель может быть использована в будущем для исследования дополнительных параметров. Экспериментальные, теоретические и аналитические результаты показали, что предлагаемая система стеновых сэндвич-панелей из ферроцемента применима в качестве несущего конструктивного элемента стены. Тем не менее, необходима дальнейшая работа для того, чтобы глубоко исследовать другие важные свойства этой инновационной системы.
Отделение: Американский университет в Каире. Кафедра строительства и архитектурного проектирования
Исследование стен из автоклавного ячеистого бетона с горизонтальным армированием в условиях сжатия и сдвига Научно-исследовательский доклад «Гражданское строительство»
CrossMark
Доступно на сайте www.sciencedirect.com
ScienceDirect
Инжиниринг процедур 161 (2016) 918-924
Инженерные процедуры
www.elsevier.com/locate/procedia
Всемирный многопрофильный симпозиум по гражданскому строительству, архитектуре и городскому планированию 2016,
WMCAUS 2016
Исследование стен из автоклавного пенобетона с горизонтальным армированием при сжатии и сдвиге
Радослав Ясинский *, Лукаш Дробиеца
Силезский технологический университет, факультет строительных конструкций, 44-100 Гливице, Польша
Аннотация
В статье описаны исследования влияния армирования швов на сжатие и сдвиг кладки из автоклавного газобетона (AAC, 600 кг / м3).18 армированных моделей при сжатии и 18 образцов при диагональном сжатии были испытаны в соответствии с требованиями стандартов EN 1052-1: 2000 [4] и ASTM E519-81 [1]. Испытания сжатых стен показали, что арматура влияет на прочность на сжатие и деформируемость стены. Исследование стен на сдвиг показало, что наиболее благоприятное влияние на прочность на сдвиг достигается при использовании арматуры стальной конструкционной фермы при нанесении раствора на верхнюю и нижнюю поверхности основания блоков (двойные стыки).© Авторы, 2016, опубликованоElsevierLtd. Это статья в открытом доступе по лицензии CC BY-NC-ND (http://creativecommons.Org/licenses/by-nc-nd/4.0/).
Рецензирование под ответственностью оргкомитета WMCAUS 2016
Ключевые слова: Автоклавный газобетон, AAC, прочность на сжатие, прочность на сдвиг, модуль упругости;
1. Введение
Во многих публикациях можно найти информацию о положительном влиянии арматуры на механические свойства кладки [5,6].Однако в мировой литературе сложно найти результаты испытаний, описывающие воздействие арматуры. В статье описаны исследования влияния 3-х видов армирования швов на сжатие и сдвиг кладки из автоклавного газобетона (тип AAC, 600 кг / м3).
* Автор, ответственный за переписку. Тел .: +48 32 237 11 27 Электронный адрес: [email protected]
1877-7058 © 2016 Авторы. Опубликовано Elsevier Ltd.Это статья в открытом доступе по лицензии CC BY-NC-ND
.(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Рецензирование под ответственностью оргкомитета WMCAUS 2016
DOI: 10.1016 / j.proeng.2016.08.758
Номенклатура
f Нормированная прочность на сжатие кирпичных блоков
fm прочность на сжатие раствора (класс раствора)
f прочность волокна на разрыв
Предел текучести стальных прутков
f характеристическая прочность на сжатие
h высота стены
л длина стенки
т толщина стенки
А · ч Площадь поперечного сечения образцов для испытаний (по диагонали)
Fv> i вертикальная сила на i-м уровне нагрузки
£ y вертикальная деформация
Ex горизонтальная деформация
o «y вертикальное напряжение сжатия
zv, i напряжение сдвига на i-м уровне нагрузки
rCr, mv среднее значение напряжения сдвига в первых видимых трещинах (напряжение сдвига при растрескивании)
ru, mv среднее значение предельного напряжения сдвига (разрушающее напряжение сдвига)
2.Материалы
Испытательные образцы изготовлены из блоков AAC (f = 4,0 Н / мм2) (600 * 240 * 180 мм) одного из польских производителей на системных минометах класса М5 и М10 f = 6,1 Н / мм2 и f, = 11,9 Н / мм2). В качестве первого типа армирования использовались стальные фермы типа EFZ 140 / Z 140 (предел текучести = 685 Н / мм2) и сетки из пластмасс (прочность на разрыв отдельных волокон / = 672 Н / мм2). Второй тип армирования — это пластмассовые сетки. Третий вид армирования — базальтовые сетки.Коэффициент усиления был равен 0,007% и был ниже минимального кодового уровня. На рис. 1 показан вид арматуры, использованной в испытаниях. Армирование базальтовой сеткой применялось только при исследовании кладки при сжатии.
Рис. 1. Арматура, использованная в испытаниях, слева: тип фермы, синтетическая сетка, базальтовая сетка.
3. Модели и порядок испытаний
Испытания стенок на сжатие проводились в соответствии со стандартом [4].Образцы для испытаний (рис. 2) были возведены на спроектированных кладочных растворах, предназначенных для тонкослойных швов класса М5. Модели выполнены с заполненными и незаполненными перпендикулярными швами. Исследования проводились на гидравлическом прессе (рис. 3). Испытание на сдвиг стенки проводилось в соответствии с американскими правилами [1]. Все модели имеют одинаковые размеры и формы. Длина модели l = 1180 мм, высота h = 1212 мм, толщина соответствует толщине единичной кладки t = 180 мм — рис.4. Было выполнено 4 серии тестовых моделей, в рамках которых было исследовано от 3 до 6 тестовых элементов.
Рис. 2. Основные размеры моделей и габариты рис. 3. Вид модели с измерительной базой, внесенной в протокол испытаний. машина.
Данная серия различалась по типу применяемого раствора или арматуры. В серии RL-S-N было изготовлено 6 элементов без армирования и заполнения стыков головок.
Рис. 4. Геометрия, размеры, расположение и детали армирования опытных образцов базовой серии; 1 — пруток стальной 1,5х8 мм, 2 — пруток круглый
1,5 мм, 3 — сетка участка волокна, 4 — матрица волокна.
При применении арматуры в виде ферм серия, обозначенная как RL-S-Z1, состоит из 3 моделей. Ряд элементов, армированных фермами, был дополнен дополнительно 3 элементами, в которых применялась двухкомпонентная кладка на блоки — RL-S-Z1-4-6.В случаях, когда применялась сетка из пластика, процедура была аналогичной при исследовании одной трехэлементной серии, обозначенной как RL-S-Z2. Испытательные элементы 1 были помещены в специальные стальные гнезда 2 так, чтобы одна из диагоналей располагалась вертикально, а плечи стального крепления закрывали приблизительно 1 мм. 1/10 длины (высоты) испытываемого элемента — рис.5.
Рис. 5. Стенд для испытания на диагональное сжатие.
Гнезда снабжены цилиндрическим лучезапястным суставом, что исключило влияние эксцентриситетов, образовавшихся случайно при нагружении.Испытательные модели, оснащенные стальным креплением, помещали на тележку 7 под стальную раму 6 и нагружали путем постоянного приращения поршня 3 гидравлического домкрата до момента повреждения элемента. Вид испытательной установки, используемой для испытания прочности стенки при наличии косого сдвига, представлен на рис. 5. Во время покоя сила нагрузки измерялась с помощью двух комбинированных датчиков силы 4 с диапазоном 100 кН каждый, горизонтальных и горизонтальных. Вертикальные смещения также измерялись с помощью датчиков 5.Датчики перемещений располагались по двум диагоналям с обеих сторон модели, измерение производилось на длине базы 932 мм. Длина основания была выбрана в соответствии с указаниями стандарта ASTM E519-81 [1] так, чтобы они покрывали наибольшую длину диагонали. Для каждой зарегистрированной силы F (на уровне w-го уровня нагрузки) значение средних касательных напряжений rv, i рассчитывалось как частное от нагрузки Fv> i и площади поперечного сечения стены (по диагонали) Ah из:
т-Jl2 + h3
в котором; t = 180 мм, l = 1180 мм, h = 1212 мм.
4. Результаты испытаний
4.1. Испытания на сжатие
Помимо исследования армированной каменной кладки стены также проводились испытания без армирования. Результаты этих тестов описаны в [2, 3]. При испытаниях кладки на сжатие значения напряжения растрескивания и разрушения определялись путем деления силы на измеренную площадь испытываемого элемента. Значения модуля упругости и коэффициента поперечной деформируемости (коэффициента Пуассона) определялись при напряжении, равном 1/3 максимального напряжения.Таблица 6 включает средние параметры по каждой серии. Графики средних зависимостей напряжения ay от вертикальной деформации ey и горизонтальной ex показаны на рис. 6. Идентификация отдельных серий испытаний приведена в таблице 1.
Таблица 1. Результаты испытаний кладки на сжатие, усредненные по каждой серии.
номер и описание серии испытаний Напряжение растрескивания, Н / мм2 Максимальное напряжение, Н / мм2 Модуль упругости, Н / мм2 Коэффициент Пуассона
Вертикальные швы без армирования SIN без заполнения 2.35 2,97 2040 0,18
модели S2N 2,61 2447 0,18
заполненные вертикальные швы
СИЗ 2,85 3,12 2363 0,26
Ненаполненные вертикальные швы, арматура ферменного типа
СИЗС 2,59 3,03 1753 0,22
Незаполненные вертикальные швы, армирование синтетической сеткой
СИЗСб 3,52 2484 0,33
Модели с незаполненными вертикальными швами, армирование базальтовой сеткой
арматура С2Зк 2..
4.2. Испытания на сдвиг
Повреждение всех армированных и неармированных испытательных элементов, в которых однократно уложенный раствор был нанесен в швы основания, носило внезапный характер, это означает, что при нагружении на поверхности стены не появлялись видимые трещины, слышны лишь единичные и не очень интенсивные трески.
Элементы с армированием (фермы и сетки), в которых раствор наносился только на одинарную поверхность слоя кладки, вели себя так же, как неармированные образцы с незаполненными головными швами.Нарушение адгезии произошло на границе раздела арматуры и кирпичной кладки — рис. 7 а, б. В армированных моделях, в которых раствор укладывался на стык станины и на опорные поверхности кирпичных элементов (укладка двойным раствором), изменен характер повреждений. В таблице 2 приведены средние результаты напряжений в момент растрескивания Tcr> mv и разрушения Tu> mv- В моделях с тонким слоем стыка из раствора М5 средние напряжения составили rcr, mv = 0,192 Н / мм2, в то время как в других неармированных и армированных материалах. (одинарная кладка) напряжения были меньше.Более высокие напряжения во время растрескивания Zcr, mv = 0,241 Н / мм2 присутствовали в модели, армированной фермами, в которые раствор закладывался в два слоя. Максимальное среднее напряжение в момент разрушения, полученное в моделях с тонким стыком из M5
Растворпри толщине стены (одинарная кладка) составил ru> mv = 0,269 Н / мм2. В других сериях элементов, изготовленных на том же растворе, были получены меньшие напряжения.
Рис.кр, мв 7у, мв
серии
Н / мм2 Н / мм2
RL-S-Z1-4-6
5. Анализ результатов испытаний 5.1. Испытания на сжатие
Прочность армированной и неармированной кирпичной кладки без перпендикулярных стыков превышала прочность аналогичных стен с заполненными вертикальными швами. Наибольшая прочность на сжатие достигается стенами, армированными арматурой ферменного типа и кладкой с базальтовой сеткой.Применение арматуры ферменного типа увеличило прочность стены на 5% в стенах с ненаполненными перпендикулярными швами и на 9% в стенах с заполненными швами. Применение армирования синтетической сеткой увеличило прочность стены на 2% в кладке с незаполненными вертикальными швами и на 15% в стенах с заполненными швами. Армирование базальтовой сеткой увеличило пропускную способность на 19% в стенах с ненаполненным перпендом
.швов и 8% в стенах с заполненными швами. Использование арматуры вызвало изменение модуля упругости и коэффициента Пуассона.27% в моделях стыковых швов заполнены.
5.2. Испытания на сдвиг
Испытания показали, что процесс растрескивания и разрушения носил внезапный характер, связанный с потерей сцепления между стеновыми элементами и раствором. Исключение составили элементы, армированные фермами, в которых раствор закладывался в стыки станины и на лицевые поверхности блоков кладки. Затем сначала появились трещины стеновых элементов, а затем трещины стыков и стыков. Применение арматуры в стыках основания при укладке раствора только на одну поверхность основания элементов стены снижает значения растрескивающего и разрушающего напряжений по сравнению со значениями, полученными в неармированных стенах (27%).Наиболее выгодным типом армирования были фермы, у которых ок. Получено увеличение на 50% растрескивающих и разрушающих напряжений. Благоприятное влияние арматуры на прочностные параметры было достигнуто только при двукратной укладке раствора на обе опорные поверхности стеновых элементов.
6. Выводы
Проведенные испытания позволяют сформулировать следующие выводы:
• наибольшая прочность на сжатие отмечена у армированной стены с заполненными перпендикулярными швами,
• наиболее эффективным оказалось армирование базальтовой сеткой,
• трещины в армированных стенах при сжатии возникли позже, чем в неармированных стенах.В моделях с незаполненными перпендикулярными швами трещины появлялись примерно на 10-27% позже, а в стенах с заполненными вертикальными швами примерно на 19-27% позже, чем в моделях без армирования,
• в случае сжатых стен с заполненными вертикальными швами модуль упругости снизился в моделях с армированной синтетической сеткой в среднем на 15%, а в моделях с арматурой ферменного типа и с базальтовой сеткой — на 16 и 25%. 83%).Только на моделях, армированных синтетической сеткой с незаполненными вертикальными швами, было небольшое снижение,
• применение арматуры в швах основания при укладке раствора только на одну поверхность основания каменных блоков (укладка одинарного раствора) отрицательно сказывается на значениях напряжений растрескивания и разрушения,
• благоприятное влияние арматуры на прочностные параметры было достигнуто только при укладке раствора на обе опорные поверхности блоков кладки (двухкомпонентная укладка).
Благодарность
Авторы тестов выражают особую благодарность Solbet Sp. z o.o. Компании за существенную и материальную помощь при проведении испытаний.
Список литературы
[1] ASTM E519-81 Стандартный метод испытаний диагонального растяжения (сдвига) блоков каменной кладки.
[2] Дробец Л., Ясинский Р., Рыбарчик Т. 2016. Влияние типа строительного раствора на характеристики сжатия стен из автоклавного материала
.Газобетон (AAC).16-я Международная конференция по кирпичной и блочной кладке.
[3] Jasinski R., Piekarczyk A., Misiewicz L. 2016. Влияние армирования каркаса и стыков на параметры сдвига AAC
.кладка стен: сравнительное исследование. 16-я Международная конференция по кирпичной и блочной кладке.
[4] PN-EN 1052-1: Методы испытаний кирпичной кладки. Определение прочности на сжатие
[5] Шуберт П. 2004.Мауэрверк. Risse vermeiden und instandsetzen. Fraunhofer IRB Verlag, Штутгарт.
[6] Тимперман П., Райс Т. 1995. Армирование стыков в кладке. Материалы Четвертой Международной конференции масонства. Британский
Общество масонства. Vol. 2, Лондон, 451-453.
.