Разное

Однофазная сеть это: Однофазная и трехфазная электрическая сеть

Содержание

Однофазная и трехфазная электрическая сеть

 

Вступление

Здравствуй Уважаемый читатель сайта Elesant.ru. Электрический ток «доставляется» до потребителя по высоковольтным линиям электропередач. Электрический ток линий электропередач имеет высокое напряжение и напрямую не может использоваться потребителями. Для повседневного использования электрического тока доставленного ЛЭП его напряжение нужно понизить.

Для этого возле потребителей устанавливаются специальные трансформаторные подстанции. Трансформаторные подстанции понижают высоковольтное напряжение до номинальных значений пригодных для использования. Остановимся немного на подстанциях.

Трансформаторная подстанция

Трансформаторные подстанции это электроустановка, предназначенная для приема, преобразования и распределения электроэнергии от линий электропередач.

Состоят подстанции из понижающего трансформатора, распределительного устройства (РУ) и устройств управления.

По способу строительства и расположения подстанции подразделяются на пристроенные, встроенные, внутрецеховые. Для загорода наиболее распространены мачтовые и столбовые подстанции.

Основным элементом подстанции является понижающий трансформатор. Понижающие трансформаторы могут быть трехфазные и однофазные. Однофазные трансформаторы используются в комплексе с трехфазными трансформаторами и в основном в сельской местности.

Понижается напряжение в трансформаторах до номинального рабочего напряжения 380 или 220 вольт. Называются эти напряжения линейным и фазным соответственно. А питание потребителей называется соответственно трехфазным и однофазным. Рассмотрим виды питания потребителей подробнее.

Однофазное электрическое питание

Однофазное электропитание запитывает потребителя от одной фазной линии и линии нулевого рабочего провода. Линии для однофазного питания называют однофазными электрическими сетями. Номинальное рабочее напряжение однофазных электрических сетей составляет 220 вольт.

Сами однофазные сети тоже можно разделить в зависимости от рабочих проводников.

Однофазная двухпроводная сеть

В однофазных двухпроводных сетях для электропитания используются два провода: фазного(L) и нулевого (N). Такая электрическая сеть не предусматривает заземление электроприборов. Двухпроводная электрическая сеть была да и остается самой распространенной в старом жилом фонде.

Если у вас дома проводка выполнена проводами с алюминиевыми жилами, скорее всего у вас двухпроводная электрическая сеть.

Пример схемы: однофазная двухпроводная сеть в квартире

Однофазная трехпроводная сеть

В однофазных трехпроводных сетях используются три провода: фазного(L), нулевого (N) и защитного, заземляющего. Третий заземляющий провод предназначен для дополнительной защиты человека от поражений электрическим током. Соединение заземляющего провода с корпусами электроприборов (заземление), позволяет отключать электропитание при замыкании фазного провода на корпус прибора (короткого фазного замыкания). Обозначается PE.

Заземление защищает не только человека от поражений электротоком, но и спасает сами электроприборы от перегораний.

Пример схемы:однофазная трехпроводная сеть в квартире

Трехфазное электрическое питание

При трехфазном питании в электрощит квартиры или ВРУ дома заводится три питающие фазы(L1;L2;L3) и нулевой рабочий проводник(N). Номинальное рабочее напряжение между любыми фазными проводами составляет 380 вольт. Напряжение между любым фазным проводом и рабочим нулем составляет 220 вольт. От электрощита проводка, распределяется по квартире или дому, согласно схеме электропроводки, обеспечивая 220 вольтовое или з80 вольтовое питание для электроприборов.

При расчете трехфазной электросети важно правильно распределить нагрузку между тремя фазами. Неравномерное распределение нагрузки между фазами приведут к перекосу фаз, сильный перекос фаз приведет к аварийной ситуации вплоть до обгорания одной из фаз.

Распределить трехфазное питание по квартире или дому можно электрокабелями с четырьмя или пятью проводами

Трехфазная четырехпроводная электрическая сеть

При четырехпроводной электропроводки электропитание происходит от трех фазных проводов и рабочего нуля. От электрощитка или распределительной коробки проводка распределяется по розеткам и светильникам двумя проводами: каждым фазным и нулевым(L1-N; L2-N; L3-N).Напряжением 220 вольт. На схемах фазы могут обозначаться А, В, С.

Пример схемы: трехфазная четырехпроводная сеть в квартире

Трехфазная пятипроводная электрическая сеть

В трехфазной пятипроводной электрической сети «появляется» пятый заземляющий провод, выполняющий защитные функции. Обозначается (PE)

Важно! Во всех трехфазных сетях важно равномерное распределение нагрузки (потребляемой мощности) между фазами. Опредилять нагрузку сети при трехфазном питании нельзя по основному закону электротехники, зокону Ома. Для расчетов нужно учитывать коэффициент мощности(cosф) и коэффициент спроса (Кспроса). Обычно для квартир cosф=0,90-0,93;Кспроса=0,8. Значение 0,8 принимается, если потребителей более 5.

Пример схемы:трехфазная пятипроводная сеть в квартире

Нормативные ссылки

Правила Устройства Электроустановок(ПУЭ),издание 7.

Другие статьи раздела: Электрические сети

 

 

Похожие статьи

Трехфазные и однофазные сети | Electric-Blogger.ru

2016-10-02 Статьи  

Трехфазная сеть — это способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Те провода, по которым ток идет, называются фазными, а по которому возвращается — нулевым.

Трехфазная цепь состоит из трех фазных проводов и одного нулевого. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120°.  Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно с экономической точки — не нужны еще два нулевых провода. Подходя к потребителю, ток распределяется на три фазы, и каждой из них дается по нулевому проводу. Так он попадает в квартиры и дома. Хотя в частном секторе нередко трехфазная сеть заводится прямо в дом.

Любая однофазная электрическая цепь состоит из двух проводов. По одному проводу ток поступает к потребителю, а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи.

Земля, или, правильнее сказать, заземление — третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем. Это можно объяснить на примере. В случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю.

От трансформаторной понижающей подстанции до ВРУ (

Вводно-распределительное устройство, где происходит прием, учет и распределение электрической энергии) приходит трехфазная сеть пятижильным проводом, а в наши квартиры приходит уже трехжильный. На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри ВРУ выполняется схема разъединения трехфазной цепи на однофазные.

К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель. В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет. Относительно земли у него нет потенциала в отличие от фа-

зного провода, в котором напряжение (фазное напряжение между фазой и нулем) равно 220 В. Между фазами (так называемое линейное напряжение между любыми из трех фаз) напряжение 380 В. Фазные провода в трехфазной сети обычно маркируются так: фаза А — желтый, фаза B — зеленый, фаза C — красный.

В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи. Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. Понятно, что нагрузка на 2 эти фазы неодинакова, происходит перекос фаз и ни о каком нейтральном проводнике речи уже не идет. На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше. Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.

На данный момент ситуация усугубляется еще тем, что большинство домашних электроприборов являются импульсными. По этой причине возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Эти импульсные приборы вместе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике может оказаться ток равный или превышающий ток одной из фаз. Однако нейтраль такого же сечения, что и фазный провод, а нагрузка больше.

Вот почему в последнее время все чаще возникает явление, называемое «отгоранием» или обрывом нулевого проводника — нейтральный проводник просто не справляется с нагрузкой, перегревается и отгорает.

Для защиты от такой неприятности надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно). Поэтому оптимальным решением я считаю использование реле контроля напряжения, которое отключит питание квартиры в случае выхода напряжения за допустимые пределы. Тем самым оно защитит ваши электроприборы.

Реле контроля напряжения

Какую сеть лучше провести в частном доме?

Если у вас в доме есть трехфазное оборудование, то ответ очевиден. Также к плюсам трехфазной сети можно отнести то, что на ввод можно использовать кабель меньшего сечения, чем при однофазной, так как в трехфазной сети мощность распределяется по трем фазам, благодаря чему на каждую фазу приходится меньшая нагрузка.

К минусам трехфазного ввода можно отнести более высокие расходы на покупку трехфазных автоматов, УЗО, счетчика, габариты распределительного щита будут больше чем однофазного, а также при трехфазной сети необходимо грамотно распределить нагрузку по фазам во избежании перекоса фаз — несимметрии токов и напряжений.

Что касается мощности, то здесь в основном все зависит от максимально разрешенной мощности, указанной в технических условиях на подключение. Если у вас на даче небольшой летний домик или бытовка и разрешенная мощность предположим 5квт, то вполне достаточно будет однофазного ввода, а вот при наличии большого загородного дома со множеством потребителей, или своей мастерской с трехфазными потребителями, то здесь конечно уже не обойтись без трехфазной сети.

Что такое однофазная и трехфазная сеть. Трехфазные и однофазные сети. Отличия. Преимущества и недостатки.

Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые — 220? Почему у одних потребителей напряжение трёхфазное, а у других — однофазное?

Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное).

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я , это обширная тема. По отношению к нулю на всех трёх фазах — напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу — на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке, и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники — про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких — почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Кроме того чрезмерно нагруженной фазе будет тяжело и обидно, что другие «отдыхают»)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

  • Ограниченная мощность потребителя

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на «хорошую» фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.


Однофазный электрощиток в доме. Правый автомат — вводной, далее — по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток — одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше — трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее ), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.


Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого — не более 40 А.

Про выбор защитного автомата я уже . А про выбор сечения провода — . Там же — жаркие обсуждения вопросов.

Но если мощность потребителя — 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Например, 15 кВт — это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

И на вводе (перед счетчиком) стоят примерно такие «ящички»:


Трехфазный ввод. Вводной автомат перед счетчиком.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются «Звезда» и «Треугольник».

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме «Звезда» , то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В «Звезду» подключены все наши квартиры и дома с однофазным вводом, другой пример — подключение ТЭНов в мощных и .

Когда нагрузка на напряжение 380В, то она включается по схеме «Треугольник», то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под «исходно» я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям — нам с вами, в квартирные дома и в частный жилой сектор.

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 — от сотен до тысяч кВт. С ТП2 напряжение поступает к нам — на несколько многоквартирных домов, на частный сектор, и т.п.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно — 380 В.

Фото

Напоследок — ещё несколько фото с комментариями.


Электрощит с трехфазным вводом, но все потребители — однофазные.

Друзья, на сегодня всё, всем удачи!

Жду отзывов и вопросов в комментариях!

В настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока .

Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ =2π /3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током .

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока . По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них сдвинуты друг относительно друга на одну треть периода, как это показано на рис. 1.

Рис. 1. Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока

Как осуществляется подобный генератор легко понять из схемы на рис. 2.

Рис. 2. Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть

Здесь имеются три самостоятельных якоря, расположенных на статоре электрической машины и смещенных на 1/3 окружности (120 о). В центре электрической машины вращается общий для всех якорей индуктор, изображенный на схеме в виде .

В каждой катушке одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 периода друг относительно друга, ибо индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей.

Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рис. 2, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например .

В этом случае для передачи всей энергии, которую поглощают , требовалось бы шесть проводов. Можно однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку.

Первый из этих способов, называется соединением звездой (рис. 3).

Рис. 3. Четырехпроводная система проводки при соединении трехфазного генератора звездой. Нагрузки (группы электрических ламп I, II, III) питаются фазными напряжениями.

Будем называть зажимы обмоток 1, 2, 3 началами, а зажимы 1″ , 2″ , 3″ — концами соответствующих фаз.

Соединение звезд заключается в том, что мы соединяем концы всех обмоток в одну точку генератора, которая называется нулевой точкой или нейтралью , и соединяем генератор с приемниками электроэнергии четырьмя проводами: тремя так называемыми линейными проводами , идущими от начала обмоток 1, 2, 3, и нулевым или нейтральным проводом , идущим от нулевой точки генератора. Такая система проводки называется четырехпроводной .

В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети. Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы. Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.

Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – . Возможен еще третий провод – заземление.

Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.

Отличия

Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.

• В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
• Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
• Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
• Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности. Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.


Преимущества 1-фазной сети

Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные , в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.

В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в . А при установке экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина. Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения. Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается. Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же. Поэтому видно, что по мощности особой выгоды нет.

Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить , так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.

Большое значение имеет размер , который для 3-фазной сети будет иметь размеры заметно больше. Это зависит от размера трехфазного , который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места. Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока. Ими могут быть , и другие мощные устройства, что является достоинством трехфазной сети. Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.

Недостатки трехфазной сети для частного дома

В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:

  1. Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
  2. Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
  3. Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
  4. Необходим монтаж в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частных домов
  1. Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
  2. Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
  3. Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение ввода.
  4. Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.

В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м 2 . Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.

Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Электрическое напряжение трехфазных сетей

Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для , которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Виды напряжения

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт , поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – .

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Проводить разводку проводки такого типа можно без использования профессионального оборудования и приборов, достаточно обычных отверток с индикаторами.

Соединяя проводники не нужно монтировать нулевой контакт , ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Соотношение


Значение напряжения фазы равняется около 58% от мощности линейного аналога . То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В , имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

Электрические агрегаты трехфазного питания работают только при подключении сразу к трем выводам разных фаз.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Схема


Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.

Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.

Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность — 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.

Имея источник трехфазного напряжения и двигатели, имеющие аналогичную схему подключения, можно получить в разы больше мощности просто за счет эффективного подключения всех агрегатов.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй — это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно , в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю — k=1.

И закон Ома:

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

Uл – линейное, Uф – фазовое. Формула справедлива, только если — I L = I F .

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

Идентичная структура формулы активной мощности:

Примеры расчета:

Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.

Линейные напряжения в этом подключении будут одинаковы и определяются как:

  • U1=U2=U3= √3 Uф=√3*220=380 В.

Трехфазные и однофазные сети одинаково широко используются в электрооборудовании многоквартирных и частных домов. Вообще-то, промышленная сеть изначально трехфазная и в большинстве случаев к многоквартирному дому или улице частных домов подходит именно трехфазная сеть. Потом уже она разветвляется на три однофазные. Это сделано в целях обеспечения максимально эффективной передачи электроэнергии от электростанции к потребителям, а также с целью максимального снижения потерь в процессе транспортировки.

Определить, какая именно сеть идет у вас в квартире достаточно просто. Нужно просто открыть электрический щиток и посмотреть, сколько проводов используется для вашей квартиры. В однофазной сети у вас будет 2 или 3 провода – фаза, ноль и заземляющий проводник. В трехфазной 4 или 5 – фаза A, фаза B, фаза C, ноль и заземляющий проводник. Точно также количество фаз можно определить и по вводным автоматическим выключателям. В однофазной сети их будет 2 или 1 сдвоенный, а в трехфазной – 1 один строенный и одинарный.

Справедливости ради стоит отметить, что трехфазные сети в квартирной электросети используются достаточно редко. Три фазы подают одному абоненту только в случае использования на кухнях старых трехфазных электрических плит или для подключения чрезвычайно мощных потребителей в частных домах (циркулярка, мощные нагревательные и отопительные устройства).

Если сети не имеют каких-то специфических параметров, то их можно различить еще и по значению входного напряжения . В однофазной сети оно равно 220 В, а в трехфазной между одной из фаз и нулем оно также равно 220 В, а между двумя фазами – 380 В.

В чем же отличие однофазной сети от трехфазной применительно к рядовому потребителю?

Если не учитывать различие между количеством проводников в обоих сетях и специфику подключения некоторых особо мощных электроприборов, то можно выделить некоторые «плюсы» и «минусы» обоих сетей.

  • При использовании трехфазной сети есть вероятность неравномерного распределения нагрузки на каждую фазу. К примеру, от одной фазы будет запитан мощный нагреватель и электрический котел, а от другой – всего лишь холодильник и телевизор. Тогда будет иметь место неприятный эффект, так называемый «перекос фаз» – несиметрия токов и напряжений, который может повлечь за собой выход из строя некоторых бытовых электроприборов. Чтобы этого избежать необходимо более тщательно планировать распределение нагрузки еще в процессе монтажа электрической сети.
  • Трехфазная сеть, в отличие от однофазной требует больше проводов, кабелей и автоматических выключателей, следовательно обойдется намного дороже.
  • Однофазная сеть по потенциально возможной мощности уступает трехфазной. Поэтому, если предполагается использование много мощных потребителей, то лучше выбрать второй вариант. Если к примеру в дом с линии электропередач заходит двужильный (трехжильный – в случае с заземляющим проводником) провод сечением 16 мм 2 , то суммарная мощность всех потребителей в доме не может превышать 14 кВт. В случае с использованием того же сечения для трехфазной сети (правда кабель будет 4- или 5-жильным) максимально возможная суммарная мощность будет равна уже 42 кВт.

Какой вариант лучше, зачастую определяется соответствующими органами (представителями организаций), которые контролируют подачу электроэнергии потребителям. Домашнему электромастеру достаточно лишь научиться определять, какая именно сеть используется в данном случае и, исходя из этого производить ремонт или установку внутриквартирной электро фурнитуры.

Трехфазные и однофазные сети в доме. Схема, мощность, расчет трехфазных и однофазных сетей

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это обязательно.

Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть — это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электрическая цепь состоит из двух проводов. По одному ток идет к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной сети (рис. 1).

Рис. 1. Схема однофазной цепи

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается — нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120 °C (рис. 2). Более подробно на этот вопрос поможет ответить учебник по электромеханике.

Рис. 2. Схема трехфазной цепи

Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически — не нужны еще два нулевых провода. Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы. Об этом будет рассказано позднее.
Земля, или, правильнее сказать, заземление — третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем.
Это можно объяснить на примере. В случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю (рис. 3).

Рис. 3. Простейшая схема заземления

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора. Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током. При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что нулевой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции.

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нолевой провод как заземляющий. Никогда так не делайте. При обрыве нолевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

В 99 % случаев для квартиры устанавливается однофазная сеть. Отличить ее от трехфазной очень просто. Если во входящем кабеле 3 или 2 провода, то сеть однофазная, когда 5 или 4 — трехфазная (рис. 4). 

Рис. 4. Четырехжильным или двухжильным кабель становится, если убирается заземляющий провод

Как известно, по проводам, передающим энергию на расстояние, течет трехфазный ток — так выгоднее. В квартиру он заходит однофазным. Расщепление трехфазной цепи на 3 однофазных происходит во ВРУ. Туда входит пятижильный кабель, а выходит трехжильный (рис. 5).

Рис. 5. Схема расщепления трехфазной сети на однофазные потребители

На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри щита выполняется схема разъединения трехфазной цепи на однофазные (рис. 6).

Рис. 6. Однофазная электрическая сеть

К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель.
В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет. Относительно земли у него нет потенциала в отличие от фазового, в котором напряжение равно 220 В. В паре «фаза — фаза» напряжение 380 В. В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи. Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая — где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. (рис. 7).

Рис. 7. Трехфазная электрическая сеть

Понятно, что нагрузка на 2 эти фазы неодинакова и ни о каком нейтральном проводнике речи уже не идет. На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше.

Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.
В последнее время ситуация с некомпенсацией токов в такой сети усугубилась тем, что появились новые электроприборы, которые называются импульсными. В момент включения они потребляют намного больше энергии, чем при нормальной работе. Эти импульсные приборы вкупе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике (ноле) возникает напряжение, которое может быть раза в 2 больше, чем на любой фазе. Однако нейтраль такого же сечения, что и фазовый провод, а нагрузка больше.
Вот почему в последнее время все чаще возникает явление, называемое отгоранием ноля — нейтральный проводник просто не справляется с нагрузкой и перегорает. Бороться с таким явлением непросто: надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно). На худой конец можно купить понижающий разделительный трансформатор, он же стабилизатор напряжения.

В частном доме ситуация получше, поскольку хозяин один и распределить электроэнергию по фазам намного проще. Это даже увлекательное занятие — рассчитать мощность электроприборов и распределять их по фазам, чтобы нагрузка была одинаковой. Все расчеты делаются примерно, и вовсе не значит, что надо включать свет и 2 телевизора, а если заработал столярный станок на улице — это перебор. Все зависит от желания хозяина дома: провести трехфазную сеть или однофазную. Здесь есть свои плюсы и минусы.

Минусов трехфазной сети 2.

1. Напряжение на отдельном участке сильно зависит от работы других. Если перегружена одна из фаз, остальные могут работать некорректно. Проявиться это может как угодно. Чтобы такого не происходило, нужен стабилизатор — вещь недешевая.
2. Необходимо оборудование в щит, рассчитанное именно под трехфазную сеть, а также расходы на устройство трехфазной сети. Они будут больше, нежели для однофазной. Кроме того, нужно знать правила эксплуатации трехфазных сетей.

Плюсов трехфазной сети тоже 2.

1. Трехфазная сеть позволяет получить больше мощности. Если однофазная сеть при суммарной мощности приборов в 10 кВт уже испытывает перегрузки, то трехфазная прекрасно справляется и с 30 кВт. Пример очень простой. Если с линии ЛЭП в дом заходит всего 1 фаза, то при сечении входящего проводника 16 мм2 максимальная мощность составит всего 14 кВт, а если все 3 фазы — то уже 42 кВт. Разница весьма ощутимая.
2. Необычайно просто становится подключать электроприборы, имеющие трехфазное питание (электрические плиты). Самое главное в случае с частным домом — трехфазные электрические двигатели, которые стоят на многих станках.

Трехфазные и однофазные электрические сети

Как известно, по проводам, передающим энергию на расстояние, течет трехфазный ток — так выгоднее. В квартиру он заходит однофазным. Расщепление трехфазной цепи на 3 однофазных происходит во ВРУ. Туда входит пятижильный кабель, а выходит трехжильный (рис, 11.2).

Рис. 11.2. Схема расщепления трехфазной сети на однофазные потребители

На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри щита выполняется схема разъединения трехфазной цепи на однофазные (рис, 11.3). К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель.

Рис. 11.3. Однофазная электрическая цепь

В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет. Относительно земли у него нет потенциала в отличие от фазового, в котором напряжение равно 220 В. В паре «фаза — фаза» напряжение 380 В. В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи. Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая — где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. (рис, 11.4).

Рис. 11.4. Трехфазная электрическая цепь

Понятно, что нагрузка на 2 эти фазы неодинакова и ни о каком нейтральном проводнике речи уже не идет. На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше.

Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.

В последнее время ситуация с некомпенсацией токов в такой сети усугубилась тем, что появились новые электроприборы, которые называются импульсными. В момент включения они потребляют намного больше энергии, чем при нормальной работе. Эти импульсные приборы вкупе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике (ноле) возникает напряжение, которое может быть раза в 2 больше, чем на любой фазе. Однако нейтраль такого же сечения, что и фазовый провод, а нагрузка больше.

Вот почему в последнее время все чаще возникает явление, называемое отгоранием ноля — нейтральный проводник просто не справляется с нагрузкой и перегорает. Бороться с таким явлением непросто: надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно). На худой конец можно купить понижающий разделительный трансформатор, он же стабилизатор напряжения.

В частном доме ситуация получше, поскольку хозяин один и распределить электроэнергию по фазам намного проще. Это даже увлекательное занятие — считать мощность электроприборов и распределять их по фазам, чтобы нагрузка была одинаковой. Все расчеты делаются примерно, и вовсе не значит, что надо включать свет и 2 телевизора, а если заработал столярный станок на улице — это перебор. Все зависит от желания хозяина дома: провести трехфазную сеть или однофазную. Здесь есть свои плюсы и минусы.

Минусов трехфазной сети 2.

1. Напряжение на отдельном участке сильно зависит от работы других. Если перегружена одна из фаз, остальные могут работать некорректно. Проявиться это может как угодно. Чтобы такого не происходило, нужен стабилизатор — вещь недешевая.

ной. Кроме того, нужно знать правила эксплуатации трехфазных сетей.

Плюсов трехфазной сети тоже 2.

1. Трехфазная сеть позволяет получить больше мощности. Если однофазная сеть при суммарной мощности приборов в 10 кВт уже испытывает перегрузки, то трехфазная прекрасно справляется и с 30 кВт. Пример очень простой. Если с линии ЛЭП в дом заходит всего 1 фаза, то при сечении входящего проводника 16 мм1 максимальная мощность составит всего 14 кВт, а если все 3 фазы — то уже 42 кВт. Разница весьма ощутимая.


Однофазная или трехфазная электростанция – что выбрать

Потенциальные покупатели часто задаются вопросом, какой из видов электростанций лучше – однофазный или трехфазный. Знакомясь с техническими характеристиками генераторов, они выясняют, что КПД первых агрегатов немного ниже, но менеджеры настоятельно рекомендуют именно однофазные станции. При этом на дом приходятся три фазы.

Невозможно однозначно ответить на вопрос, какой из видов генераторов лучше: для каждой конкретной ситуации необходимо изучить все нюансы, связанные с параметрами основного ввода и схемы распределения между потребителями.

 

Особенности электростанций в зависимости от количества фаз

  • Назначение трехфазного электрогенератора – обеспечение питанием потребителей с 3 фазами. Для однофазных приборов, разделенных на три группы, он не подойдет.
  • Одно из ключевых требований для безаварийной работы трехфазной станции – равномерное распределение нагрузки между всеми фазами. Не допускается разница свыше 25 %.
  • Мощность однофазной генерирующей установки передается целиком по этой фазе, а трехфазной – равномерно распределена.

 

Способы подключения генераторов

В жилом секторе трехфазные потребители встречаются крайне редко: в основном это электродвигатели и различные нагревательные системы, выпускавшиеся много лет назад. Современные бытовые приборы производятся в однофазном исполнении, поэтому пользователю легче заменить морально устаревшее оборудование на новое, чем усложнять схему резервного питания.

Переключение с основной линии на резервную обычно выполняется при помощи АВР (автоматического включения резерва). Его основная задача – быстрое включение генератора при выходе параметров основной сети за пределы полей допусков, обратное переключение после их восстановления и остановка электростанции. АВР также выступает в качестве барьера, предотвращающего попадание напряжения из основной сети в цепь агрегата.

Однофазные ввод и электростанция. Это самая простая ситуация, встречающаяся чаще всего. Дом запитан от одной фазы, в нем отсутствуют 3-фазные потребители. Для обеспечения резервного питания используются однофазные генератор и АВР.

Трехфазный ввод, однофазная электростанция для группы потребителей. Такой способ применим, когда на дом приходятся три фазы, каждая из которых обеспечивает энергией группу потребителей. Можно резервировать одну из них – самую важную, отвечающую за жизнеобеспечение (например, освещение, автоматику отопления и холодильник), а другие две оставить без питания. Используются однофазные электростанция и АВР.

Трехфазный ввод и генератор для всех групп потребителей. В схеме, когда на дом заходят три фазы, каждая из которых питает свою группу потребителей, а 3-фазные электроприборы отсутствуют, резервирование может быть реализовано двумя способами.

  • Можно установить трехфазные электростанцию и АВР, но при этом необходимо следить, чтобы нагрузка на каждую из фаз была одинаковой. Для этого придется изменить коммутацию в распределительном щите и постоянно контролировать параметры нагрузки.
  • Можно установить однофазный генератор и трехфазный АВР. Такой вариант реализовать легче всего, поскольку нет потребителей с 3 фазами. Достаточно подобрать соответствующий по мощности генератор и подключить его посредством АВР к сети по однофазному принципу. Такой способ позволит не затрагивать коммутацию и исключает проблемы с неравномерностью нагрузки.

Если обратить внимание на каталоги крупных производителей электрогенераторов (например, компании Pramac или AKSA), можно заметить, что большая часть их продукции – трехфазная.

Основным потребителем таких электростанций является промышленный сектор, большая часть оборудования которого нуждается именно в таком питании. Если взять для примера механический цех любого машиностроительного предприятия, то основная техника в нем представлена станками, грузоподъемными и транспортными механизмами, то для его функционирования нужно 3 фазы. В данном случае для предотвращения простоев необходима трехфазная электростанция и, возможно, небольшой однофазный генератор для организации аварийного освещения. 

Трёхфазный ток, преимущества трёхфазного тока при использовании

Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.

Трехфазный переменный ток

Большинство людей, за исключением специалистов — электриков, имеют весьма смутное представление, что такое так называемый «трёхфазный» переменный ток, да и в понятиях, что такое сила тока, напряжение и электрический потенциал, а также мощность, — часто путаются.

Попытаемся простым языком дать начальные понятия об этом. Для этого обратимся к аналогиям. Начнём с простейшей – протекания постоянного тока в проводниках. Его можно сравнить с водным потоком в природе. Вода, как известно, всегда течёт от более высокой точки поверхности к более низкой. Всегда выбирает самый экономичный (наикратчайший) путь. Аналогия с протеканием тока – полнейшая. Причём количество воды протекающей в единицу времени через какое-то сечение потока будет аналогично силе тока в электрической цепи. Высота любой точки русла реки относительно нулевой точки – уровня моря – будет соответствовать электрическому потенциалу любой точки цепи. А разница в высоте любых двух точек реки будет соответствовать напряжению между двумя точками цепи.

Используя эту аналогию можно легко представить в уме законы протекания постоянного электрического тока в цепи. Чем выше напряжение – перепад высот, тем больше скорость потока, и, следовательно, количество воды протекающей по реке в единицу времени.

Водный поток, точно так же как электрический ток при своём движении испытывает сопротивление русла – по каменистому руслу вода будет протекать бурно, меняя направление, немного нагреваясь от этого (бурные потоки даже в сильные морозы не замерзают вследствие нагрева от сопротивления русла). В гладком канале или трубе вода потечёт быстро и в итоге в единицу времени канал пропустит гораздо больше воды, чем извилистое и каменистое русло. Сопротивление потоку воды полностью аналогично электрическому сопротивлению в цепи.

Теперь представим закрытую бутылку, в которой налито немного воды. Если мы начнём эту бутылку вращать вокруг поперечной оси, то вода в ней будет перетекать попеременно от горлышка к донышку и наоборот. Это представление – аналогия переменному току. Казалось бы, одна и та же вода перетекает туда-сюда и что? Тем не менее, этот переменный поток воды способен совершать работу.

Откуда вообще появилось понятие переменный ток? к содержанию

Да с тех самых пор, когда человечество, узнав, что перемещение магнита вблизи проводника вызывает электрический ток в проводнике. Именно движение магнита вызывает ток, если магнит положить рядом с проводом и не двигать – никакого тока в проводнике это не вызовет. Далее, мы хотим получить (генерировать) в проводнике ток, чтобы использовать его в дальнейшем для каких-либо целей. Для этого изготовим катушку из медного провода и начнём возле неё двигать магнит. Магнит можно передвигать возле катушки как угодно – двигать по прямой туда-сюда, но, чтобы не двигать магнит руками, создать такой механизм технически сложнее, чем просто начать его вращать около катушки, аналогично вращению бутылки с водой из предыдущего примера. Вот именно таким образом — по техническим причинам — мы и получили синусоидальный переменный ток, используемый ныне повсеместно. Синусоида – это развёрнутое во времени описание вращения.

В дальнейшем оказалось, что законы протекания переменного тока в цепи отличаются от протекания постоянного тока. Например, для протекания постоянного тока сопротивление катушки равно просто омическому сопротивлению проводов. А для переменного тока – сопротивление катушки из проводов значительно увеличивается из-за появления, так называемого индуктивного сопротивления. Постоянный ток через заряженный конденсатор не проходит, для него конденсатор – разрыв цепи. А переменный ток способен свободно протекать через конденсатор с некоторым сопротивлением. Далее выяснилось, что переменный ток может быть преобразован с помощью трансформаторов в переменный ток с другими напряжением или силой тока. Постоянный ток такой трансформации не поддаётся и, если мы включим любой трансформатор в сеть постоянного тока (что делать категорически нельзя), то он неизбежно сгорит, так как постоянному току будет сопротивляться только омическое сопротивление провода, которое делается как можно меньше, и через первичную обмотку потечёт большой ток в режиме короткого замыкания.

Заметим также, что электродвигатели могут быть созданы для работы и от постоянного тока, и от переменного тока. Но разница между ними такая – электродвигатели постоянного тока сложнее в изготовлении, но зато позволяют плавно изменять скорость вращения обычным регулирующим силу тока реостатом. А электродвигатели переменного тока гораздо проще и дешевле в изготовлении, но вращаются только с одной, обусловленной конструкцией скоростью. Поэтому в практике широко применяются и те, и другие. В зависимости от назначения. Для целей управления и регулирования применяются двигатели постоянного тока, а в качестве силовых установок – двигатели переменного тока.

Далее конструкторская мысль изобретателя генератора двигалась примерно в таком направлении – если удобнее всего для генерации тока использовать вращение магнита рядом с катушкой, то почему бы вместо одной катушки генератора не расположить вокруг вращающегося магнита несколько катушек (места-то вокруг вон сколько)?

Получится сразу же, как бы несколько генераторов, работающих от одного вращающегося магнита. Причём переменный ток в катушках будет отличаться по фазе – максимум тока в последующих катушках будет несколько запаздывать относительно предыдущих. То есть синусоиды тока, если их графически изобразить, будут, как бы между собой, сдвинуты. Это важное свойство – сдвиг фаз, о котором мы расскажем ниже.

Примерно так рассуждая, американский изобретатель Никола Тесла и изобрёл сначала переменный ток, а затем и трёхфазную систему генерации тока с шестью проводами. Он расположил три катушки вокруг магнита на равном расстоянии под углами 120 градусов, если за центр углов принять ось вращения магнита.

(Число катушек (фаз) вообще-то может быть любым, но для получения всех тех преимуществ, что даёт многофазная система генерации тока, минимально достаточно трёх).

Далее русский учёный электротехник Михаил Осипович Доливо-Добровольский развил изобретение Н. Тесла, впервые предложив трёх — и четырёхпроводную систему передачи трёхфазного переменного тока. Он предложил соединить один конец всех трёх обмоток генератора в одну точку и передавать электроэнергию всего по четырём проводам. (Экономия на дорогих цветных металлах существенная). Оказалось, что при симметричной нагрузке каждой фазы (равным сопротивлением) ток в этом общем проводе равняется нулю. Потому что при суммировании (алгебраическом, с учётом знаков) сдвинутых по фазе на 120 градусов токов они взаимно уничтожаются. Этот общий провод так и назвали – нулевой. Поскольку ток в нём возникает только при неравномерности нагрузок фаз и численно он небольшой, гораздо меньше фазных токов, то представилась возможность использовать в качестве «нулевого» провод меньшего сечения, чем для фазных проводов.

По этой же самой причине (сдвиг фаз на 120 градусов) трехфазные трансформаторы получились значительно менее материалоёмкими, так как в магнитопроводе трансформатора происходит взаимопоглощение магнитных потоков и его можно делать с меньшим сечением.

Сегодня трёхфазная система электроснабжения осуществляется четырьмя проводами, три из них называются фазными и обозначаются латинскими буквами: на генераторе — А, В и С, у потребителя — L1, L2 и L3. Нулевой провод так и обозначается – 0. 

Напряжение между нулевым проводом и любым из фазных проводов называется – фазным и составляет в сетях потребителей – 220 вольт.

Между фазными проводами тоже существует напряжение, причём значительно выше, чем фазное напряжение. Это напряжение называется линейным и составляет в цепях потребителей 380 вольт. Почему же оно больше фазного? Да всё это из-за сдвига фаз на 120 градусов. Поэтому, если на одном проводе, к примеру, в данный момент времени потенциал равен плюс 200 вольт, то на другом фазном проводе в этот же момент времени потенциал будет минус 180 вольт. Напряжение – это разность потенциалов, то есть оно будет + 200 – (-180)=+380 В.

Возникает вопрос, если по нулевому проводу ток не протекает, то нельзя ли его вообще убрать. Можно. И мы получим трёхпроводную систему электроснабжения. С соединением потребителей так называемым «треугольником» — между фазными проводами. Однако нужно заметить, что при неравномерной нагрузке в сторонах «треугольника» на генератор будут действовать разрушающие его нагрузки, поэтому данную систему можно применять при огромном количестве потребителей, когда неравномерности нагрузок нивелируются. Передача электроэнергии от больших электростанций при высоких фазных и линейных напряжениях (сотни тысяч вольт) так и осуществляются. Почему же применяется такое высокое напряжение. Ответ простой – чтобы уменьшить потери в проводах на нагрев. Так как нагрев проводов (потери энергии) пропорционален квадрату протекающего тока, то желательно чтобы протекающий ток был минимален. Ну а для передачи необходимой мощности при минимальном токе нужно повышать напряжение. Линии электропередач (ЛЭП) так и обозначаются, к примеру, ЛЭП – 500 – это линия электропередачи под напряжением 500 киловольт.

Кстати потери в проводах ЛЭП можно ещё более снизить, применяя передачу постоянного тока высокого напряжения (перестаёт действовать емкостная составляющая потерь, действующая между проводами), проводились даже такие эксперименты, но широкого распространения пока такая система не получила, видимо вследствие большей экономии в проводах при трёхфазной системе генерации.

Выводы: преимущества трёхфазной системы к содержанию

В заключение статьи подведём итоги, – какие же преимущества даёт трёхфазная система генерации и электроснабжения?

  1. Экономия на количестве проводов, необходимых для передачи электроэнергии. Учитывая немалые расстояния (сотни и тысячи километров) и то, что для проводов используют цветные металлы с малым удельным электрическим сопротивлением, экономия получается весьма существенной.
  2. Трёхфазные трансформаторы, при равной мощности с однофазными, имеют значительно меньшие размеры магнитопровода. Что позволяет получить существенную экономию.
  3. Очень важно, что трёхфазная система передачи электроэнергии создаёт при подключении потребителя к трём фазам как бы вращающееся электромагнитное поле. Опять-таки, вследствие сдвига фаз. Это свойство позволило создать чрезвычайно простые и надёжные трёхфазные электродвигатели, у которых нет коллектора, а ротор, по сути, представляет собой простую «болванку» в подшипниках, к которой не нужно подсоединять никакие провода. (На самом деле конструкция короткозамкнутого ротора имеет свои особенности и вовсе не болванка) Это так называемые трёхфазные асинхронные электродвигатели с короткозамкнутым ротором. Очень широко распространённые сегодня в качестве силовых установок. Замечательное свойство таких двигателей – это возможность менять направление вращения ротора на обратное простым переключением двух любых фазных проводов.
  4. Возможность получения в трёхфазных сетях двух рабочих напряжений. Другими словами менять мощность электродвигателя или нагревательной установки путём простого переключения питающих проводов.
  5. Возможность значительного уменьшения мерцаний и стробоскопического эффекта светильников на люминисцентных лампах путём размещения в светильнике трёх ламп, питающихся от разных фаз.

Благодаря этим преимуществам трёхфазные системы электроснабжения получили широчайшее распространение в мире.

Что подразумевается под однофазным или трехфазным подключением? – Энергид

Переменный электрический ток, который снабжает ваш дом, может быть обеспечен различными типами подключения:

  • 2 провода: однофазный соединение
  • 3- или 4-проводной: трехфазный соединение

Каждый тип подключения имеет свои преимущества. С однофазной системой проще сбалансировать электрические нагрузки сети.С другой стороны, трехфазное соединение больше подходит для потребления в здании, в котором есть мощные машины (например, в помещении индивидуального подрядчика) или лифте, для которого требуется трехфазная система. . Фактически, он может нести в три раза большую мощность, чем .

Как узнать, подключен ли мой дом через однофазную или трехфазную сеть?

Просто взгляните на свою электрическую сервисную панель . Вы увидите либо 2, либо 3, либо 4 провода.

2-проводное: однофазное подключение

При однофазном подключении к вашему электрощитку подходят два провода:

  • черный или красный провод под напряжением
  • синий «нейтральный» провод

Разность напряжений 230 В разделяет эти два провода.

3- или 4-проводное: трехфазное подключение

Если это трехфазное подключение, к вашему электрощитку подходят 3 или 4 провода, в зависимости от того, что ваш электрик смог установить с имеющейся инженерной сетью.

  • три «живых» провода: черный, красный, коричневый или серый
  • синий «нейтральный» провод

Это позволит ему правильно распределить силовые кабели вашего дома в зависимости от типа подключения, чтобы сохранить баланс электрической сети.

Большую часть времени разность напряжений 230 В отделяет каждый провод под напряжением от нейтрали, в то время как между двумя проводами под напряжением имеется разность напряжений 400 В .Это позволяет питать как бытовые кабели напряжением 230 В, так и машины, требующие 400 В (например, автомобильное зарядное устройство).

Обратите внимание, что некоторые дома поставляются с трехфазным питанием 3 x 230 В . Напряжение 230 В разделяет каждый провод под напряжением, нулевой провод отсутствует.

Нужны ли мне специальные розетки, если мой дом подключен к трехфазной сети?

Да, но только для устройств , работающих в трехфазном режиме , таких как двигатель лифта или коммерческая печь.Это круглые 4-контактные разъемы + земля, подключенные к 5 проводам : 3 провода под напряжением + нейтраль + земля.

Для остальных розеток подойдет стандартная модель 2 контакта + земля. Эти розетки имеют 2 провода и заземление : 2 провода под напряжением (трехфазное напряжение 400 В) или 1 провод под напряжением + нейтраль (трехфазное напряжение 230 В).

Нейтральный и заземляющий провода: не путать!

Если ваша электрическая система была правильно установлена, ваш нейтральный провод имеет синий цвет .Он позволяет получить необходимое напряжение между двумя клеммами.

Его не следует путать с заземлением желтого и зеленого цвета . Это позволяет передавать утечку электрического тока из неисправного устройства или кабеля на землю, защищая вас от поражения электрическим током.

Можно ли увеличить мощность однофазного подключения, или его стоит поменять на трехфазное?

При необходимости мощность вашего однофазного подключения может быть увеличена максимально до 63 А.В некоторых случаях вам, возможно, действительно придется переключиться на трехфазное питание, например, если вы хотите, чтобы ваш электромобиль заряжался быстрее.

Однофазные энергосистемы | Многофазные цепи переменного тока

На принципиальной схеме однофазной системы электропитания мало что показано в отношении проводки практической силовой цепи.

 

Выше показана очень простая цепь переменного тока. Если бы рассеиваемая мощность нагрузочного резистора была существенной, мы могли бы назвать это «схемой питания» или «системой питания», а не рассматривать ее как обычную схему.

Различие между «цепью питания» и «обычной схемой» может показаться произвольным, но с практической точки зрения это определенно не так.

Практический анализ цепей

Одной из таких проблем является размер и стоимость проводки, необходимой для подачи питания от источника переменного тока к нагрузке. Обычно мы не задумываемся об этом, если просто анализируем цепь ради изучения законов электричества.

Однако в реальном мире это может стать серьезной проблемой.Если мы зададим источнику в приведенной выше схеме значение напряжения, а также зададим значения рассеиваемой мощности для двух нагрузочных резисторов, мы сможем определить требования к проводке для этой конкретной схемы:

 

С практической точки зрения проводка для нагрузки 20 кВт при 120 В переменного тока довольно прочная (167 А).

 

 

83,33 А для каждого нагрузочного резистора на рисунке выше дают в сумме 166,66 А общего тока цепи.Это немалое количество тока, и для него потребуются медные провода сечением не менее 1/0.

Такая проволока имеет диаметр более 1/4 дюйма (6 мм) и весит более 300 фунтов на тысячу футов. Имейте в виду, что медь тоже недешева! В наших интересах было бы найти способы минимизировать такие затраты, если бы мы проектировали энергосистему с проводниками большой длины.

Один из способов сделать это — увеличить напряжение источника питания и использовать нагрузки, рассчитанные на рассеивание по 10 кВт каждая при этом более высоком напряжении.

Нагрузки, конечно, должны иметь более высокие значения сопротивления, чтобы рассеивать ту же мощность, что и раньше (по 10 кВт каждая) при большем напряжении, чем раньше.

Преимуществом будет меньшее потребление тока, что позволит использовать меньший, легкий и дешевый провод:

 

Те же нагрузки 10 кВт при 240 В переменного тока требуют менее прочной проводки, чем при 120 В переменного тока (83 А).

 

 

Теперь наш общий ток цепи равен 83.33 ампера, половина того, что было раньше.

Теперь мы можем использовать проволоку 4 калибра, которая весит меньше половины веса проволоки 1/0 калибра на единицу длины. Это значительное снижение стоимости системы без ухудшения производительности.

Вот почему разработчики систем распределения электроэнергии выбирают передачу электроэнергии с использованием очень высокого напряжения (многие тысячи вольт): чтобы извлечь выгоду из экономии, полученной за счет использования меньшего, легкого и дешевого провода.

Опасность повышения напряжения источника

Однако это решение не лишено недостатков.Еще одна практическая проблема с силовыми цепями — опасность поражения электрическим током от высокого напряжения.

Опять же, это обычно не то, на чем мы концентрируемся, изучая законы электричества, но это очень важная проблема в реальном мире, особенно когда речь идет о больших объемах энергии.

Повышение эффективности за счет увеличения напряжения в цепи представляет собой повышенную опасность поражения электрическим током. Энергораспределительные компании решают эту проблему, протягивая свои линии электропередач вдоль высоких столбов или вышек и изолируя линии от несущих конструкций большими фарфоровыми изоляторами.

В точке потребления (потребитель электроэнергии) остается вопрос, какое напряжение использовать для питания нагрузок.

Высокое напряжение обеспечивает большую эффективность системы за счет снижения тока в проводнике, но не всегда практично держать силовую проводку вне досягаемости в точке использования, как это может быть поднято вне досягаемости в распределительных системах.

На этот компромисс между эффективностью и опасностью решили пойти европейские проектировщики энергосистем, поскольку все их домашние хозяйства и бытовые приборы работают при номинальном напряжении 240 вольт вместо 120 вольт, как в Северной Америке.

Вот почему туристы из Америки, посещающие Европу, должны иметь при себе небольшие понижающие трансформаторы для своих портативных приборов, чтобы понизить мощность 240 В переменного тока до более подходящих 120 В переменного тока.

Решения для подачи напряжения потребителям

Понижающие трансформаторы в конечной точке питания используют

Есть ли способ одновременно реализовать преимущества повышения эффективности и снижения угрозы безопасности?

Одним из решений может быть установка понижающих трансформаторов в конечной точке потребления электроэнергии, как это должен делать американский турист, находясь в Европе.

Однако это было бы дорого и неудобно для всего, кроме очень малых нагрузок (где трансформаторы можно построить дешево) или очень больших нагрузок (где стоимость толстых медных проводов превышала бы стоимость трансформатора).

Две нагрузки более низкого напряжения в серии

Альтернативным решением может быть использование источника более высокого напряжения для питания двух последовательно подключенных нагрузок более низкого напряжения. Этот подход сочетает в себе эффективность высоковольтной системы с безопасностью низковольтной системы:

 

Последовательно соединенные нагрузки 120 В переменного тока, приводимые в действие источником 240 В переменного тока на 83.3 А полный ток.

 

Обратите внимание на маркировку полярности (+ и -) для каждого показанного напряжения, а также на однонаправленные стрелки для тока.

По большей части я избегал маркировки «полярности» в цепях переменного тока, которые мы анализировали, даже несмотря на то, что это обозначение подходит для обеспечения системы отсчета для фазы.

В последующих разделах этой главы фазовые отношения станут очень важными, поэтому я ввожу это обозначение в начале главы для вашего ознакомления.

Ток через каждую нагрузку такой же, как и в простой 120-вольтовой цепи, но токи не складываются, потому что нагрузки подключены последовательно, а не параллельно.

Напряжение на каждой нагрузке составляет всего 120 вольт, а не 240, поэтому запас прочности выше. Имейте в виду, у нас все еще есть полные 240 вольт по проводам системы питания, но каждая нагрузка работает при пониженном напряжении.

Если кто-то и получит удар током, скорее всего, это произойдет от контакта с проводниками определенной нагрузки, а не от контакта с главными проводами энергосистемы.

Модификации конструкции серии с двумя нагрузками

У этой конструкции есть только один недостаток: последствия отказа одной нагрузки или ее отключения (при условии, что каждая нагрузка имеет последовательный переключатель включения/выключения для прерывания тока) нехороши.

При последовательной цепи, если какая-либо нагрузка размыкается, ток прекращается и в другой нагрузке. По этой причине нам нужно немного изменить дизайн: (Рисунок ниже)

 

Добавление нейтрального проводника позволяет управлять нагрузками по отдельности.

 

 

Двухфазная система питания

Вместо одного источника питания на 240 вольт мы используем два источника на 120 вольт (в фазе друг с другом!) последовательно для получения 240 вольт, а затем прокладываем третий провод к точке соединения между нагрузками на случай возникновения одного загрузочное отверстие.

Это называется системой питания с расщепленной фазой . Три меньших провода по-прежнему дешевле, чем два провода, необходимые для простой параллельной конструкции, поэтому мы по-прежнему впереди по эффективности.

Проницательный наблюдатель заметит, что нулевой провод должен проводить только разность тока между двумя нагрузками обратно к источнику.

В приведенном выше случае с идеально «сбалансированными» нагрузками, потребляющими одинаковое количество энергии, нейтральный провод несет нулевой ток.

Обратите внимание, как нейтральный провод подключен к заземлению на стороне источника питания. Это общая черта в энергосистемах, содержащих «нейтральные» провода, поскольку заземление нейтрального провода обеспечивает минимально возможное напряжение в любой момент времени между любым «горячим» проводом и заземлением.

Важным компонентом системы питания с расщепленной фазой является двойной источник переменного напряжения. К счастью, спроектировать и построить его несложно.

Поскольку большинство систем переменного тока в любом случае получают питание от понижающего трансформатора (понижающего напряжение от высоких уровней распределения до напряжения пользовательского уровня, такого как 120 или 240), этот трансформатор можно построить с вторичной обмоткой с отводом от середины:

 

Американское электропитание 120/240 В переменного тока вырабатывается от общего трансформатора с центральным отводом.

 

Если питание переменного тока поступает непосредственно от генератора (альтернатора), катушки могут быть аналогичным образом соединены центральным отводом для того же эффекта. Дополнительные расходы на включение центрального отвода в обмотку трансформатора или генератора минимальны.

Вот где маркировка полярности (+) и (-) становится действительно важной. Это обозначение часто используется для ссылки на фазировку нескольких источников переменного напряжения , поэтому ясно, помогают ли они («усиливают») друг другу или противостоят («ослабляют») друг другу.

Если бы не эта маркировка полярности, соотношение фаз между несколькими источниками переменного тока могло бы быть очень запутанным. Обратите внимание, что источники с расщепленной фазой на схеме (каждый на 120 вольт ∠ 0°) с полярностью (+) и (-) точно так же, как и батареи с последовательным включением, могут быть альтернативно представлены как таковые: (рисунок ниже)

 

Источник с расщепленной фазой 120/240 В переменного тока эквивалентен двум последовательным источникам 120 В переменного тока.

 

Чтобы математически рассчитать напряжение между «горячими» проводами, мы должны вычесть напряжений, потому что их отметки полярности показывают, что они противоположны друг другу:

 

 

Если мы пометим общую точку соединения двух источников (нейтральный провод) одним и тем же знаком полярности (-), мы должны выразить их относительные фазовые сдвиги как разнесенные на 180°.В противном случае мы бы обозначили два источника напряжения, находящихся в прямой оппозиции друг к другу, что дало бы 0 вольт между двумя «горячими» проводниками.

Почему я трачу время на подробное описание меток полярности и фазовых углов? В следующем разделе будет больше смысла!

Энергетические системы в американских домах и легкой промышленности чаще всего имеют расщепленную фазу, обеспечивая так называемое питание 120/240 В переменного тока. Термин «расщепленная фаза» просто относится к раздельному питанию в такой системе.

В более общем смысле этот тип источника питания переменного тока называется однофазным , потому что обе формы напряжения находятся в фазе или в шаге друг от друга.

Термин «однофазный» является противоположностью другому типу энергосистемы, называемой «многофазной», которую мы собираемся подробно исследовать. Приносим извинения за длинное вступление, предшествующее заглавной теме этой главы.

Преимущества многофазных энергосистем становятся более очевидными, если сначала хорошо разобраться в однофазных системах.

 

ОБЗОР:

  • Однофазные энергосистемы определяются наличием источника переменного тока только с одной формой волны напряжения.
  • Система питания с расщепленной фазой представляет собой систему с несколькими (синфазными) источниками переменного напряжения, соединенными последовательно, обеспечивающими питание нагрузки более чем одним напряжением, с более чем двумя проводами. Они используются в первую очередь для достижения баланса между эффективностью системы (низкие токи в проводниках) и безопасностью (низкие напряжения нагрузки).
  • Источники переменного тока с расщепленной фазой можно легко создать, соединив обмотки катушек трансформаторов или генераторов переменного тока посередине.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Разница между однофазной и трехфазной энергосистемой

Однофазное электричество

Однофазная система является наиболее распространенной и в основном используется в домах, в то время как трехфазная система распространена в промышленных или коммерческих зданиях, где требуется большая мощность.

Однофазные системы используют электроэнергию переменного тока (AC), в которой напряжение и ток изменяются по величине и направлению циклическим образом, обычно от 50 до 60 раз в секунду. В Великобритании однофазное напряжение составляет 230 вольт.

В электротехнике однофазная электроэнергия относится к распределению с использованием системы, в которой все напряжения питания изменяются в унисон.

Проще говоря, однофазное электричество можно рассматривать как одноместное каноэ.Весло входит в воду для подачи мощности, а затем покидает воду до того, как второе весло снова входит в воду для подачи большей мощности, что приводит к изменению мощности.

Время от времени будет нулевая выходная мощность, а в цикле будет два пиковых выхода мощности, см. диаграмму ниже.

Рисунок 9: График однофазной мощности

Однофазное распределение используется, когда нагрузки в основном связаны с освещением и обогревом, с несколькими большими электродвигателями. Однофазный источник питания, подключенный к электродвигателю переменного тока, не создает вращающегося магнитного поля; однофазным двигателям требуются дополнительные цепи для запуска, и такие двигатели редко имеют номинальную мощность выше 10 кВт или 20 кВт.

Специальные однофазные тяговые электрические сети могут работать на частоте 16,67 Гц или других частотах для питания электрических железных дорог.

Трехфазное электричество

Проще говоря, трехфазное электричество можно рассматривать как три однофазных источника электроэнергии, которые обеспечивают пиковую мощность на расстоянии 120° друг от друга.

В качестве аналогии рассмотрим каноэ с тремя гребцами, вращающими каноэ по очереди. В отличие от одного каноиста, здесь всегда есть выходная мощность, а не нулевая, что делает этот источник питания более подходящим для промышленных двигателей и оборудования.

Рисунок 10: График трехфазной мощности

Разница между однофазным и трехфазным источником питания переменного тока

Мощность переменного тока (переменный ток) представляет собой вид электричества, в котором часто меняется направление тока. В начале 1900 года источник переменного тока использовался как для бизнеса, так и для дома, а теперь он расширился. Система электропитания подразделяется на два типа, а именно: однофазное электроснабжение и трехфазное электроснабжение.В большинстве промышленных и коммерческих предприятий трехфазное питание используется для работы с высокими нагрузками, тогда как дома обычно питаются от однофазного источника питания, поскольку бытовым приборам требуется меньше энергии. В этой статье обсуждается разница между однофазными и трехфазными источниками питания, а также , как узнать однофазный или трехфазный .


Что такое фаза в электричестве?

Как правило, фазное электричество представляет собой ток или напряжение между существующим проводом, а также нейтральным кабелем.Фаза означает распределение нагрузки, если используется один провод, на нем будет дополнительная нагрузка, а если используются три провода, то нагрузки будут разделены между ними. Это можно назвать меньшей мощностью для 1 фазы и большей мощностью для 3 фаз.

Если это 1-фазная система, то она включает два провода, а если это 3-фазная система, то она состоит либо из 3-х проводов (или) из четырех проводов. Обе системы питания, как однофазные, так и трехфазные, используют мощность переменного тока для обозначения блоков. Потому что ток с использованием переменного тока всегда в направлении переменного.Основное различие между этими двумя поставками заключается в надежности доставки.

Однофазный источник питания

Во всей электрической области однофазное питание — это подача электроэнергии переменного тока системой, в которой происходит одновременное изменение всех питающих напряжений. Этот тип совместного использования источника питания используется, когда нагрузка (бытовая техника) обычно включает тепло и молнию с огромными электродвигателями.

Когда 1-фазный источник питания подключен к двигателю переменного тока, он не создает вращающееся магнитное поле, вместо этого однофазные двигатели требуют дополнительных цепей для работы, но такие электродвигатели с номинальной мощностью около 10 кВт встречаются редко. .В каждом из циклов однофазное системное напряжение достигает пикового значения два раза; прямая мощность не стабильна.

Однофазный сигнал

Нагрузка с однофазным питанием может питаться от трехфазного делительного трансформатора двумя способами. Один – с соединением между двумя фазами или с соединением между одной фазой и нейтралью. Эти два дадут разные напряжения от данного источника питания. Этот тип фазового питания обеспечивает выходное напряжение около 230 В. Применение этого источника питания используется для запуска небольших бытовых приборов, таких как кондиционеры, вентиляторы, обогреватели и многие другие.

Преимущества

Преимущества выбора однофазного питания обусловлены следующими причинами.

  • Простая конструкция
  • Стоимость проектирования меньше
  • Повышенная эффективность, обеспечивающая мощность переменного тока почти 1000 Вт
  • Обеспечивает максимальную мощность 1000 Вт
  • Работает в различных отраслях и областях применения

Приложения

Применения однофазного питания включают следующее.

  • Этот блок питания подходит как для дома, так и для бизнеса.
  • Используется для обеспечения достаточного количества энергии для жилых домов, а также для непромышленных предприятий.
  • Этого источника питания достаточно для работы двигателей мощностью примерно до 5 лошадиных сил (л.с.).

Трехфазное питание

Трехфазный источник питания состоит из четырех проводов, состоящих из одного нейтрального и трех жил. Три проводника удалены от фазы и пространства и имеют фазовый угол 120º друг от друга.3-фазные источники питания используются как однофазные источники питания переменного тока.

Для работы с небольшой нагрузкой 1-фазный источник питания переменного тока вместе с нейтралью можно выбрать из 3-фазного источника питания переменного тока. Это предложение является постоянным и не будет сброшено до нуля. Сила этой системы может быть проиллюстрирована двумя конфигурациями, а именно соединением в звезду (или) соединением в треугольник. Соединение по схеме «звезда» используется в дальней связи, так как включает нейтральный кабель к току ошибки.

Преимущества трехфазного сигнала

Преимущества трехфазного питания по сравнению с однофазным обусловлены следующими причинами:

  • Для трехфазного источника питания требуется меньше меди
  • Показывает минимальный риск для сотрудников, работающих с этой системой
  • Обладает большей эффективностью проводника
  • Рабочие, работающие в этой системе, также получают заработную плату
  • Он даже может работать с расширенным диапазоном силовых нагрузок

Трехфазное питание

Применения трехфазного питания включают следующее.

  • Эти типы источников питания используются в электросетях, мобильных башнях, центрах обработки данных, самолетах, кораблях, беспилотных системах, а также других электронных нагрузках мощностью более 1000 Вт.
  • Он применим к промышленным, производственным и крупным предприятиям.
  • Они также используются в энергоемких центрах обработки данных с высокой плотностью размещения.

Ключевые различия между однофазными и трехфазными источниками питания

Ключевые различия между 1 фазой и 3 фазами заключаются в следующем.

.
Особенность Однофазный Трехфазный
Определение Однофазный источник питания работает с использованием одного проводника Трехфазный источник питания работает с использованием трех проводников
Волновой цикл Имеет только один отчетливый волновой цикл Имеет три различных волновых цикла
Соединение цепи Нужен всего один провод для подключения к цепи Эта фаза питания требует трех проводов для соединения с цепью
Уровни выходного напряжения Обеспечивает уровень напряжения почти 230 В Обеспечивает уровень напряжения почти 415 В
Название фазы Название фазы для одной фазы — расщепленная фаза Для этой фазы нет конкретного названия
Способность передачи энергии Имеет минимальную мощность для передачи мощности Эта фаза имеет максимальную мощность для передачи энергии
Сложность цепи 1-фазный блок питания можно сконструировать просто Конструкция сложная
Сбой питания Будет частый сбой питания Сбоев питания не происходит
Потеря Максимальные потери в одной фазе Потери в 3 фазе минимальны
Эффективность Имеет минимальную эффективность Имеет максимальную эффективность
Стоимость Не дороже трехфазного блока питания Немного дороже, чем однофазный
Приложения Используется для домашнего использования Трехфазный источник питания используется на крупных предприятиях для работы с большими нагрузками.

Самая запутанная концепция, с которой люди сталкиваются здесь, это « как отличить однофазную и трехфазную» ?

Ответ заключается в определении ширины главного выключателя. Однофазные источники питания имеют ширину в один полюс, тогда как трехфазные источники питания имеют ширину в три полюса.

Как преобразовать одну фазу в три фазы?

Поскольку это наиболее важная концепция, которую необходимо знать, следующие пункты объясняют преобразование одной фазы в три фазы.

При наличии крупногабаритного компрессора без какого-либо трехфазного источника питания, соответствующего системе, в которой построена местная сеть, существует несколько путей решения этой проблемы и обеспечения надлежащей мощности для компрессора. Выдающимся решением является преобразование трехфазного двигателя в однофазный двигатель.

Для этого преобразования существуют в основном три типа трехфазных преобразователей.

  • Статический преобразователь – Если трехфазный двигатель не запускается с 1-фазным питанием, то после запуска он может работать от 1-фазного владельца.Это происходит при поддержке конденсаторов. Но этот метод имеет не такую ​​большую эффективность, а также меньший временной интервал.
  • Вращающийся преобразователь фаз. Он функционирует как интеграция генератора и трехфазного двигателя. Он состоит из двигателя холостого хода, который, когда он находится в движении, производит мощность и благодаря всей этой настройке может надлежащим образом стимулировать трехфазную систему.
  • Преобразователь частотно-регулируемого привода – Он работает с использованием инверторов, которые генерируют переменный ток на любых уровнях частоты и воспроизводят почти все внутренние условия трехфазного двигателя.

Таким образом, речь идет о различиях между однофазными и трехфазными блоками питания и сравнительной таблице. Наконец, из приведенной выше информации мы можем сделать вывод, что при правильном подходе к проектированию источника питания разработчик может дать подходящий совет для максимальной эффективности и экономии затрат вашего проекта.

Выбор однофазной (или) трехфазной системы в основном зависит от требований к мощности конкретного приложения. В любом случае, хорошо спроектированный компонент обеспечит надежное и стабильное распределение энергии.Вот вопрос к вам, каковы основные функциональные возможности трехфазных и однофазных источников питания?

Разница между однофазным и трехфазным блоком питания

В этом руководстве мы изучим различия между однофазными и трехфазными блоками питания переменного тока. Мы увидим несколько основ однофазных и трехфазных систем, преимущества и недостатки, а также некоторые ключевые различия между однофазными и трехфазными источниками питания.

Введение

Почти 90% электроэнергии, которую мы используем в повседневной жизни, поступает от переменного источника.Будь то наша бытовая техника, офисное оборудование или промышленные машины, мы используем источник переменного тока для питания этих устройств.

Если вы новичок, то переменный ток или просто переменный ток — это вид электроэнергии, в котором электрический ток периодически меняется, как по величине, так и по направлению. Кроме того, в зависимости от приложения, мощность переменного тока может подаваться либо в однофазной, либо в трехфазной системе.

Однофазная система питания переменного тока состоит из двух проводов, называемых фазным (или иногда Линейным, Под напряжением или Горячим), и нейтрального провода.В случае трехфазной системы вы используете либо три провода, либо четыре провода для передачи питания (нет нейтрали в трехпроводном трехфазном питании, и все три провода являются фазами).

Давайте теперь углубимся в детали однофазных и трехфазных систем, а также посмотрим на разницу между однофазными и трехфазными источниками питания.

Что такое однофазный источник питания?

Как упоминалось ранее, в однофазном источнике питания мощность распределяется с использованием только двух проводов, называемых фазой и нейтралью.Поскольку мощность переменного тока имеет форму синусоидальной волны, напряжение в однофазной сети достигает максимума 90 0 во время положительного цикла и снова 270 0 во время отрицательного цикла.

Фазный провод несет ток к нагрузке, а нейтральный провод обеспечивает обратный путь тока. Обычно однофазное напряжение составляет 230 В, а частота — 50 Гц (это зависит от того, где вы живете).

Поскольку напряжение в однофазном источнике питания повышается и падает (пики и спады), постоянная мощность не может подаваться на нагрузку.

Преимущества
  • Это очень распространенная форма источника питания для самых малых требований к мощности. Почти все бытовые электросети являются однофазными, так как бытовым приборам требуется небольшое количество энергии для работы освещения, вентиляторов, охладителей, обогревателей, небольших кондиционеров и т. д.
  • Конструкция и работа однофазной системы электропитания часто бывают простыми.
  • В зависимости от региона однофазного питания достаточно для нагрузки до 2500 Вт.
Недостатки
  • Небольшие однофазные двигатели (обычно менее 1 кВт) не могут запускаться напрямую от однофазного источника питания, так как для двигателя недостаточно начального крутящего момента.Таким образом, для правильной работы необходимы дополнительные схемы, такие как пускатели двигателей (например, пусковые конденсаторы в вентиляторах и насосах).
  • Тяжелые нагрузки, такие как промышленные двигатели и другое оборудование, не могут работать от однофазной сети.

Что такое трехфазный источник питания?

Трехфазный источник питания состоит из трех силовых проводов (или трех фаз). Кроме того, в зависимости от типа цепи (которых существует два типа: звезда и треугольник), у вас может быть или не быть нейтрального провода.В трехфазной системе электропитания каждый сигнал мощности переменного тока на 120 0 не совпадает по фазе друг с другом.

В трехфазном источнике питания в течение одного цикла 360 0 каждая фаза достигла бы пикового значения напряжения дважды. Кроме того, мощность никогда не падает до нуля. Этот постоянный поток мощности и способность выдерживать более высокие нагрузки делают трехфазное питание подходящим для промышленных и коммерческих операций.

Как упоминалось ранее, в трехфазном источнике питания существует два типа конфигураций цепей.Это Дельта и Звезда (Y или звезда). В конфигурации треугольника нулевой провод отсутствует, и все системы высокого напряжения используют эту конфигурацию.

Что касается конфигурации «звезда» или «звезда», имеется нейтральный провод (общая клемма/точка цепи «звезда») и провод заземления (иногда).

Напряжение между двумя фазами в трехфазном источнике питания составляет 415 В, а между фазой и нейтралью — 240 В. Следовательно, вы можете обеспечить три однофазных источника питания, используя трехфазный источник питания (как это обычно делается для жилых помещений и малых предприятий).

ПРИМЕЧАНИЕ: Существует разница между прямым трехфазным питанием и трехфазным питанием, разделенным на три однофазных питания.

Преимущества
  • При одинаковой мощности трехфазный источник питания использует меньше проводов, чем однофазный источник питания.
  • Трехфазный источник питания обычно является предпочтительной сетью для коммерческих и промышленных нагрузок. Хотя в некоторых странах (например, в большинстве европейских стран) даже бытовое электроснабжение является трехфазным.
  • Вы можете очень легко запускать большие нагрузки.
  • Большие трехфазные двигатели (обычно используемые в промышленности) не требуют пускателя, поскольку разность фаз в трехфазном источнике питания будет достаточной для обеспечения достаточного начального крутящего момента для запуска двигателя.
  • Почти вся мощность вырабатывается в трехфазном электроснабжении. Хотя существует концепция многофазного питания, исследования показали, что трехфазный источник питания более экономичен и прост в производстве.
  • Общая эффективность трехфазного источника питания выше по сравнению с однофазным источником питания для той же нагрузки.

Разница между однофазным и трехфазным блоком питания

Давайте теперь посмотрим на разницу между однофазным и трехфазным источником питания.

  • В однофазном источнике питания питание подается по двум проводам, называемым фазным и нейтральным. При трехфазном питании питание подается по трем проводам (четыре провода, если включен нейтральный провод).
  • Напряжение однофазного питания составляет 230 В, а трехфазного — 415 В.
  • Для одинаковой мощности однофазного источника питания требуется больше проводов, чем для трехфазного источника питания.
  • Эффективность трехфазного источника питания значительно выше, чем у однофазного источника питания, и мощность передачи также больше.
  • Поскольку в однофазном источнике питания используется только два провода, общая сложность сети меньше по сравнению с четырехпроводным трехфазным источником питания (включая нейтраль).

Сравнение однофазных и трехфазных источников питания

Давайте теперь посмотрим сравнение однофазных и трехфазных систем электропитания в таблице.

.
Однофазный блок питания Трехфазный источник питания
Для однофазного источника питания требуется два проводника Трехфазный источник питания требует трех проводников
Два провода (проводника) в однофазной системе называются фазой и нейтралью Все три провода (проводника) в трехфазной системе называются фазами
Поскольку есть только один провод, есть только один сигнал переменного тока (обычно синусоидальный) Три провода в трехфазной сети несут собственный сигнал переменного тока, и эти три сигнала разнесены на 120°
Подача электроэнергии при однофазном питании непостоянна из-за пиков и провалов напряжения Благодаря трем проводникам с разницей фаз 120° подача мощности в трехфазном питании всегда стабильна и постоянна (пики и провалы трех сигналов переменного тока компенсируются друг другом)
Напряжение питания при однофазном питании ≈230В При трехфазном питании напряжение питания составляет ≈415 В
Однофазное питание относительно менее эффективно, чем трехфазное при той же мощности Трехфазный источник питания более эффективен, поскольку он может обеспечить в три раза большую мощность, чем однофазный источник питания, всего с одним дополнительным проводом
Обычно однофазное электроснабжение подается для жилых и бытовых нужд (часто раздельная фаза от трехфазного электроснабжения) Трехфазный источник питания обычно обслуживается крупными коммерческими центрами и предприятиями
Идеально подходит для небольших нагрузок, таких как освещение и отопление Трехфазное питание может работать с большими промышленными двигателями
Однофазные источники питания всегда имеют нейтральный провод (он действует как обратный путь от нагрузки) Нейтральный провод является необязательным в трехфазных источниках питания (соединение треугольником не имеет нейтрального провода, но соединение звездой может иметь или не иметь нейтральный провод)
Вероятность неисправности выше, так как однофазный источник питания имеет только одну фазу (в случае отказа питание отсутствует) Даже в случае неисправности одной или двух фаз оставшиеся фазы будут продолжать подавать питание в трехфазном источнике питания.Значит, вероятность неисправности меньше

Вам нужен трехфазный источник питания?

В зависимости от ваших требований ваша компания по распределению электроэнергии предложит либо однофазный, либо трехфазный источник питания. Для небольших домов и магазинов достаточно однофазного питания.

Но если у вас большой дом с тремя-четырьмя кондиционерами (все могут работать одновременно), водонагревателями, большим погружным насосом, стиральной машиной, двухдверным холодильником и т. д., то вам может понадобиться трехфазное питание, чтобы нагрузка на каждую фазу распределялась правильно.

Поскольку у нас нет прямых трехфазных устройств, то, что делает компания по распределению электроэнергии, заключается в том, что три фазы от трехфазного источника предоставляются как три отдельных однофазных источника питания. Например, если у вас три спальни с тремя кондиционерами, то каждой комнате будет предоставлена ​​своя фаза.

Обычно в квартирах и поселках есть специальные трансформаторы, чтобы они могли понижать напряжение 11 кВ, поступающее непосредственно от подстанции, до напряжения 240 В, не завися от уличного трансформатора.

В чем разница между 1-фазным, 2-фазным и 3-фазным питанием?

Электричество похоже на воду, поэтому позвольте мне объяснить явление воды:

Ток подобен потоку воды, а напряжение также называют разностью потенциалов. Это похоже на перепад уровня воды. Для соединения их тонкой трубкой используются две бутылки с водой.

Если две бутылки поставить на один уровень, то в тонкой трубке не будет потока воды, но если поднять одну бутыль, то будет генерироваться поток воды, т. е. поток воды будет течь из высокой бутылки в низкая бутылка.

Например, используются 3 бутылки АВС, а затем 3 тонкие трубки используются для соединения 3 бутылок соответственно (то есть для образования углового соединения). поток, B также течет в C.

Если C поднять на 20 см, то окажется, что A течет в BC, а C течет в B. Причина в том, что вода течет сверху вниз.

Ток переменного тока меняется в положительном и отрицательном направлениях, подобно тому, как бутылка движется вверх и вниз по уровню, заставляя направление потока воды в водопроводе меняться на положительное и отрицательное.

Трехфазное электричество, такое как бутылки ABC 3, периодически перемещаются вверх и вниз, но они не перемещаются вверх и вниз одновременно, а в шахматном порядке на 1/3 цикла замены, так что будут различия между ABC и 3 время от времени. Разность потенциалов, которая заставляет подключенную нагрузку генерировать ток.

По этой причине трехфазное электричество может питать нагрузку без использования нулевого провода.

Трехфазный переменный ток является формой передачи электрической энергии, называемой трехфазным электричеством.Трехфазный источник переменного тока представляет собой источник питания, состоящий из трех потенциалов переменного тока с одинаковой частотой, одинаковой амплитудой и разностью фаз 120° друг от друга.

Трехфазный переменный ток имеет множество применений и большую часть электрооборудования переменного тока в промышленности. Например, в электродвигателях используется трехфазный переменный ток, который часто называют трехфазной четырехпроводной системой. В повседневной жизни часто используется однофазная мощность, также известная как мощность освещения.

При использовании электроэнергии освещения для питания используйте одну из трехфазных линий электроснабжения для питания электрооборудования. Например, бытовая техника, а другой провод — это четвертый провод среди трехфазных и четырехпроводных, то есть нулевой провод, который проводится от нейтральной точки трехфазного электричества.

Объяснение однофазного и трехфазного питания

Однофазное питание используется в большинстве домов и на малых предприятиях, поскольку его установка относительно проста и недорога.Коммерческие и промышленные предприятия с большими потребностями в электроэнергии предпочитают трехфазное питание, потому что оно более эффективно и дешевле в эксплуатации. Но в чем именно разница между однофазным и трехфазным питанием?

3-фазный против однофазного

Чтобы проиллюстрировать разницу между однофазным и трехфазным питанием, представьте себе одинокого гребца в каноэ. Он может двигаться только вперед, пока его весло движется по воде. Когда он поднимает весло из воды, чтобы подготовиться к следующему гребку, мощность, подаваемая на каноэ, равна нулю.

А теперь представьте то же самое каноэ с тремя гребцами. Если их гребки синхронизированы, так что каждый из них разделен на 1/3 цикла гребка, каноэ получает постоянное и постоянное движение по воде. Подается больше энергии, и каноэ движется по воде более плавно и эффективно.

Однофазное питание
  • Однофазное электричество используется в большинстве домов и малых предприятий
  • Способен обеспечить достаточную мощность для большинства небольших потребителей, включая дома и небольшие непромышленные предприятия
  • Подходит для двигателей мощностью до 5 лошадиных сил; однофазный двигатель потребляет значительно больший ток, чем эквивалентный трехфазный двигатель, что делает трехфазное питание более эффективным выбором для промышленного применения

3-фазное питание
  • Распространен в крупных компаниях, а также в промышленности и производстве по всему миру
  • Становится все более популярным в энергоемких центрах обработки данных с высокой плотностью размещения
  • Дорого преобразовать существующую однофазную установку, но 3 фазы позволяют использовать меньшую, менее дорогую проводку и более низкое напряжение, что делает ее более безопасной и дешевой в эксплуатации
  • Высокоэффективный для оборудования, предназначенного для работы от 3 фаз

Однофазные и трехфазные продукты Tripp Lite

.

Добавить комментарий

Ваш адрес email не будет опубликован.